Please wait a minute...
金属学报  2019, Vol. 55 Issue (4): 469-479    DOI: 10.11900/0412.1961.2018.00140
  本期目录 | 过刊浏览 |
E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究
马宏驰1,2,杜翠薇1,刘智勇1(),李永1,李晓刚1,3
1. 北京科技大学腐蚀与防护中心教育部腐蚀与防护重点实验室 北京 100083
2. 南京钢铁股份有限公司 南京 210035
3. 中国科学院宁波材料技术与工程研究所 宁波 315201
Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment
Hongchi MA1,2,Cuiwei DU1,Zhiyong LIU1(),Yong LI1,Xiaogang LI1,3
1. Key Laboratory for Corrosion and Protection MOE, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. Nanjing Iron and Steel United Co., Ltd., Nanjing 210035, China
3. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(45893 KB)   HTML
摘要: 

采用U形弯试样干湿交替腐蚀的实验方法,结合电化学测试和裂纹扩展行为分析,对比研究了E690钢焊接热影响区热模拟组织在模拟含SO2海洋薄液环境中的应力腐蚀行为及机理。结果表明,E690钢焊接热影响区组织在含SO2海洋薄液环境中具有较高的应力腐蚀敏感性,其中细晶热影响区组织与母材的应力腐蚀敏感性相对较低,粗晶和临界热影响区组织在该环境中应力腐蚀敏感性很高,裂纹扩展速率较快,且呈加速扩展之势。不同组织U形弯试样经过5 d干湿交替腐蚀实验后均形成应力腐蚀微裂纹,裂纹萌生于马氏体-奥氏体(M-A)组元与铁素体基体之间微电偶腐蚀形成的点蚀坑处。

关键词 高强低合金钢焊接热影响区应力腐蚀SO2海洋环境干湿交替腐蚀    
Abstract

With the extensive exploitation of ocean resources, the steels used in ocean engineering have been developed towards the trend of high strength-toughness and thick plates, which consequently causes welding problem and high risk of stress corrosion cracking (SCC). The heat-affected zone (HAZ) of high-strength low-alloy steel undergoes phase transformation during welding thermal cycle and it's generally considered to be most vulnerable to SCC. E690 steel, as a newly-developed high strength steel, is currently the leading kind of steel used in ocean platform for its excellent performance. However, there is few research about its SCC behavior in marine atmosphere, especially in SO2-polluted atmosphere. Therefore, it's of great importance to investigate the SCC behavior and mechanism of simulated HAZ of E690 steel in this environment. However, the HAZ is a narrow zone including various microstructures; thus, the individual performance of different microstructures is inconvenient to study. In this work, various microstructures in HAZ, including coarse grained heat-affected zone (CGHAZ), fine grained heat-affected zone (FGHAZ) and intercritical heat-affected zone (ICHAZ), were simulated by heat treatment according to real HAZ microstructures of E690 steel. A comparative study of SCC behaviors of various HAZ microstructures in simulated SO2-containing marine atmosphere was conducted by using U-bend specimen corrosion test under dry/wet cyclic condition. The results indicated that various HAZ microstructures have high susceptibility to SCC in this environment. The SCC susceptibility of CGHAZ and ICHAZ is very high with a high crack growth rate while that of FGHAZ and parent metal is relatively modest. SCC cracks were initiated after 5 d of cyclic corrosion test for U-bend specimen of various microstructures. The microcracks were initiated from the corrosion pits, which were induced by the galvanic corrosion between martensite-austenite (M-A) constituents and ferritic matrix.

Key wordshigh-strength low-alloy steel    weld heat-affected zone    stress corrosion cracking    sulfur dioxide    marine environment    dry/wet cyclic corrosion
收稿日期: 2018-04-11     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金项目(Nos.51801011);国家自然科学基金项目(Nos.51671028);国家材料环境腐蚀平台(NECP)项目和中央高校基本科研业务费专项资金项目(No.FRF-TP-18-026A1)
通讯作者: 刘智勇,李永     E-mail: liuzhiyong7804@ustb.edu.cn
Corresponding author: Zhiyong LIU,Yong LI     E-mail: liuzhiyong7804@ustb.edu.cn
作者简介: 马宏驰,男,1985年生,博士

引用本文:

马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment. Acta Metall Sin, 2019, 55(4): 469-479.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00140      或      https://www.ams.org.cn/CN/Y2019/V55/I4/469

图1  U形弯试样的宏观形貌
图2  U形弯截面取样示意图
图3  E690钢母材(BM)和模拟粗晶热影响区(CGHAZ)、细晶热影响区(FGHAZ)、临界热影响区(ICHAZ)组织的SEM像
图4  不同组织经不同时长周浸实验后的开路电位
图5  CGHAZ组织经不同时长周浸实验后的EIS
图6  U形弯试样弧顶表面CGHAZ组织经过不同时长周浸腐蚀实验后微观形貌的SEM像
图7  U形弯试样弧顶表面FGHAZ组织经过不同时长周浸腐蚀实验后微观形貌的SEM像
图8  U形弯试样弧顶表面ICHAZ组织经过不同时长周浸腐蚀实验后微观形貌的SEM像
图9  不同组织经60 d周浸实验后腐蚀产物的XRD谱
图10  图8b插图中ICHAZ组织周浸10 d除锈后表面凸起部分的EDS分析
图11  CGHAZ组织在模拟含SO2海洋环境中经不同时长周浸实验后的裂纹扩展形貌
图12  FGHAZ组织在模拟含SO2海洋环境中经不同时长周浸实验后的裂纹扩展形貌
图13  ICHAZ组织在模拟含SO2海洋环境中经不同时长周浸实验后的裂纹扩展形貌
图14  4种组织在模拟含SO2海洋环境中裂纹扩展深度随时间的变化
1 Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441
2 Hu J, Du L X, Xie H, et al. Effect of weld peak temperature on the microstructure, hardness, and transformation kinetics of simulated heat affected zone of hot rolled ultra-low carbon high strength Ti-Mo ferritic steel [J]. Mater. Des., 2014, 60: 306
3 Moon J, Kim S J, Lee C. Effect of thermo-mechanical cycling on the microstructure and strength of lath martensite in the weld CGHAZ of HSLA steel [J]. Mater. Sci. Eng., 2011, A528: 7660
4 Guo W, Crowther D, Francis J A, et al. Microstructure and mechanical properties of laser welded S960 high strength steel [J]. Mater. Des., 2015, 85: 536
5 Lan L Y, Qiu C L, Song H Y, et al. Correlation of martensite-austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel [J]. Mater. Lett., 2014, 125: 87
6 Zhang C G, Song X D, Lu P M, et al. Effect of microstructure on mechanical properties in weld-repaired high strength low alloy steel [J]. Mater. Des., 2012, 36: 235
7 Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution [J]. Corros. Sci., 2009, 51: 1718
8 Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones [J]. Corros. Sci., 2011, 53: 4028
9 Bordbar S, Alizadeh M, Hashemi S H. Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel [J]. Mater. Des., 2013, 45: 601
10 Kong D J, Wu Y Z, Dan L. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions [J]. J. Iron Steel Res. Int., 2013, 20: 43
11 Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃—An electrochemical evaluation [J]. Corros. Sci., 2013, 74: 298
12 Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel [J]. Corros. Sci., 2012, 63: 326
13 Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 404
14 Wang L W, Li X G, Du C W, et al. In-situ corrosion characterization of API X80 steel and its corresponding HAZ microstructures in an acidic environment [J]. J. Iron Steel Res. Int., 2015, 22: 136
15 Du C W, Li X G, Liang P, et al. Effects of microstructure on corrosion of X70 pipe steel in an alkaline soil [J]. J. Mater. Eng. Perform., 2009, 18: 216
16 Nishimura T, Katayama H, Noda K, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J]. Corros. Sci., 2000, 42: 1613
17 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4188
18 Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 132
19 Ma H C, Liu Z Y, Du C W, et al. Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere [J]. Mater. Sci. Eng., 2016, A650: 97
20 Zhang D W, Qian H C, Wang L T, et al. Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments [J]. Corros. Sci., 2016, 103: 234
21 Ma H C, Du C W, Liu Z Y, et al. Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere [J]. Acta Metall. Sin., 2016, 52: 331
21 马宏驰, 杜翠薇, 刘智勇等. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究 [J]. 金属学报, 2016, 52: 331
22 Antony H, Perrin S, Dillmann P, et al. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts [J]. Electrochim. Acta, 2007, 52: 7754
23 Zhou Y L, Jun C, Liu Z Y. Corrosion behavior of rusted 550 MPa grade offshore platform steel [J]. J. Iron Steel Res. Int., 2013, 20: 69
24 Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1880
25 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2808
26 Dillmann P, Mazaudier F, H?rlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1422
27 Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 291
28 Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 636
29 Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. J. Electrochem. Soc., 1997, 144: 1244
30 Zhong X K, Zhang G A, Qiu Y B, et al. The corrosion of tin under thin electrolyte layers containing chloride [J]. Corros. Sci., 2013, 66: 17
31 Qiao L J, Luo J L, Mao X. Hydrogen evolution and enrichment around stress corrosion crack tips of pipeline steels in dilute bicarbonate solution [J]. Corrosion, 1998, 54: 118
32 Dmytrakh I M, Smiyan O D, Syrotyuk A M, et al. Relationship between fatigue crack growth behaviour and local hydrogen concentration near crack tip in pipeline steel [J]. Int. J. Fatigue, 2013, 50: 28
[1] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[2] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[3] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[4] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[5] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[6] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[7] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[8] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[9] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[10] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[11] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[12] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[13] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[14] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[15] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.