|
|
E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究 |
马宏驰1,2,杜翠薇1,刘智勇1( ),李永1,李晓刚1,3 |
1. 北京科技大学腐蚀与防护中心教育部腐蚀与防护重点实验室 北京 100083 2. 南京钢铁股份有限公司 南京 210035 3. 中国科学院宁波材料技术与工程研究所 宁波 315201 |
|
Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment |
Hongchi MA1,2,Cuiwei DU1,Zhiyong LIU1( ),Yong LI1,Xiaogang LI1,3 |
1. Key Laboratory for Corrosion and Protection MOE, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China 2. Nanjing Iron and Steel United Co., Ltd., Nanjing 210035, China 3. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
引用本文:
马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
Hongchi MA,
Cuiwei DU,
Zhiyong LIU,
Yong LI,
Xiaogang LI.
Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. Acta Metall Sin, 2019, 55(4): 469-479.
1 | Li X G, Zhang D W, Liu Z Y, et al. Materials science: Share corrosion data [J]. Nature, 2015, 527: 441 | 2 | Hu J, Du L X, Xie H, et al. Effect of weld peak temperature on the microstructure, hardness, and transformation kinetics of simulated heat affected zone of hot rolled ultra-low carbon high strength Ti-Mo ferritic steel [J]. Mater. Des., 2014, 60: 306 | 3 | Moon J, Kim S J, Lee C. Effect of thermo-mechanical cycling on the microstructure and strength of lath martensite in the weld CGHAZ of HSLA steel [J]. Mater. Sci. Eng., 2011, A528: 7660 | 4 | Guo W, Crowther D, Francis J A, et al. Microstructure and mechanical properties of laser welded S960 high strength steel [J]. Mater. Des., 2015, 85: 536 | 5 | Lan L Y, Qiu C L, Song H Y, et al. Correlation of martensite-austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel [J]. Mater. Lett., 2014, 125: 87 | 6 | Zhang C G, Song X D, Lu P M, et al. Effect of microstructure on mechanical properties in weld-repaired high strength low alloy steel [J]. Mater. Des., 2012, 36: 235 | 7 | Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution [J]. Corros. Sci., 2009, 51: 1718 | 8 | Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones [J]. Corros. Sci., 2011, 53: 4028 | 9 | Bordbar S, Alizadeh M, Hashemi S H. Effects of microstructure alteration on corrosion behavior of welded joint in API X70 pipeline steel [J]. Mater. Des., 2013, 45: 601 | 10 | Kong D J, Wu Y Z, Dan L. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions [J]. J. Iron Steel Res. Int., 2013, 20: 43 | 11 | Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃—An electrochemical evaluation [J]. Corros. Sci., 2013, 74: 298 | 12 | Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel [J]. Corros. Sci., 2012, 63: 326 | 13 | Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 404 | 14 | Wang L W, Li X G, Du C W, et al. In-situ corrosion characterization of API X80 steel and its corresponding HAZ microstructures in an acidic environment [J]. J. Iron Steel Res. Int., 2015, 22: 136 | 15 | Du C W, Li X G, Liang P, et al. Effects of microstructure on corrosion of X70 pipe steel in an alkaline soil [J]. J. Mater. Eng. Perform., 2009, 18: 216 | 16 | Nishimura T, Katayama H, Noda K, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments [J]. Corros. Sci., 2000, 42: 1613 | 17 | Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4188 | 18 | Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 132 | 19 | Ma H C, Liu Z Y, Du C W, et al. Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere [J]. Mater. Sci. Eng., 2016, A650: 97 | 20 | Zhang D W, Qian H C, Wang L T, et al. Comparison of barrier properties for a superhydrophobic epoxy coating under different simulated corrosion environments [J]. Corros. Sci., 2016, 103: 234 | 21 | Ma H C, Du C W, Liu Z Y, et al. Stress corrosion behaviors of E690 high-strength steel in SO2-polluted marine atmosphere [J]. Acta Metall. Sin., 2016, 52: 331 | 21 | 马宏驰, 杜翠薇, 刘智勇等. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究 [J]. 金属学报, 2016, 52: 331 | 22 | Antony H, Perrin S, Dillmann P, et al. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts [J]. Electrochim. Acta, 2007, 52: 7754 | 23 | Zhou Y L, Jun C, Liu Z Y. Corrosion behavior of rusted 550 MPa grade offshore platform steel [J]. J. Iron Steel Res. Int., 2013, 20: 69 | 24 | Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corros. Sci., 2008, 50: 1880 | 25 | Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corros. Sci., 2006, 48: 2808 | 26 | Dillmann P, Mazaudier F, H?rlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1422 | 27 | Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 291 | 28 | Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 636 | 29 | Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. J. Electrochem. Soc., 1997, 144: 1244 | 30 | Zhong X K, Zhang G A, Qiu Y B, et al. The corrosion of tin under thin electrolyte layers containing chloride [J]. Corros. Sci., 2013, 66: 17 | 31 | Qiao L J, Luo J L, Mao X. Hydrogen evolution and enrichment around stress corrosion crack tips of pipeline steels in dilute bicarbonate solution [J]. Corrosion, 1998, 54: 118 | 32 | Dmytrakh I M, Smiyan O D, Syrotyuk A M, et al. Relationship between fatigue crack growth behaviour and local hydrogen concentration near crack tip in pipeline steel [J]. Int. J. Fatigue, 2013, 50: 28 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|