Please wait a minute...
金属学报  2020, Vol. 56 Issue (12): 1592-1604    DOI: 10.11900/0412.1961.2020.00141
  本期目录 | 过刊浏览 |
基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制
朱健1, 张志豪1,2(), 谢建新1,2
1 北京科技大学新材料技术研究院 北京 100083
2 北京科技大学材料先进制备技术教育部重点实验室 北京 100083
Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study
ZHU Jian1, ZHANG Zhihao1,2(), XIE Jianxin1,2
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China
引用本文:

朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
Jian ZHU, Zhihao ZHANG, Jianxin XIE. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. Acta Metall Sin, 2020, 56(12): 1592-1604.

全文: PDF(6221 KB)   HTML
摘要: 

采用原位TEM拉伸结合离位EBSD分析,研究了稀土H13钢在拉伸过程中的组织演化和裂纹扩展行为。结果表明,稀土H13钢拉伸试样晶界处的应力集中和粗大的颗粒状夹杂物是裂纹萌生的主要来源;拉伸过程中多处裂纹萌生后汇聚成较大的主裂纹,主裂纹沿着与拉伸方向垂直的方向扩展到试样边缘,主裂纹具有“Z”字形的锯齿状特征。裂纹附近区域的应力分布不均匀,与应力相对较低的区域相比,应力相对较高区域的V1/V2变体对的晶界长度分数从56.5%增加到58.8%,V1/V3&V5变体对的晶界长度分数从16.3%增加到21.6%;变体对的晶界长度分数增加表明了孪生马氏体含量的提高,从而有效缓解晶界处的应力集中,有利于减少裂纹萌生并提高塑韧性。拉伸过程中,稀土H13钢试样晶界处的残余奥氏体发生应力诱导相变;马氏体基体内的位错发生大量增殖,并在大角度晶界和碳化物析出处形成明显的位错塞积,其中晶界处的位错塞积促进了残余奥氏体的应力诱导相变。

关键词 稀土H13钢断裂机制原位TEM拉伸母相奥氏体取向重构马氏体变体    
Abstract

Fatigue failure caused by crack propagation is one of the main failure modes of H13 die steel. Because H13 die steel is mainly used under operational conditions involving high-pressure cycling or high friction, its crack initiation and propagation behavior play a critical role in fatigue failure. However, to the best of the authors' knowledge, few reports on the direct observation of deformation and crack propagation behavior of H13 die steel exist, which limits the understanding of the fracture mechanism of H13 die steel. In this work, an in situ TEM tensile study combined with post-mortem EBSD analysis was employed to investigate the microstructure evolution and crack propagation behavior of rare earth (RE) H13 steel. Results indicate that the stress concentration at the grain boundaries and coarse granular inclusions in the tensile specimen were the main sources of crack initiation. After crack initiation and during the tensile process, many cracks converged into the main crack. The main crack propagated along the direction perpendicular to the tensile direction, exhibiting zigzag-shaped features. The stress distribution in the area near a crack in a specimen was heterogeneous; the length fraction of V1/V2 inter-variant boundaries in the relatively high-stress area increased from 56.5% to 58.8% compared with the relatively low-stress area, and the length fraction of V1/V3&V5 inter-variant boundaries increased from 16.3% to 21.6%. The increase in the length fraction of V1/V2 inter-variant boundaries indicated an increase in the twin martensite fraction, which effectively relieved the stress concentration at the grain boundaries and reduced crack initiation. During the tensile process, the austenite retained at the grain boundaries underwent stress-induced phase transformation and was partially transformed into V1/V2 and V1/V3&V5 variant pairs. The dislocation propagation in martensite contributed to dislocation pile-up at high-angle grain boundaries and carbide precipitation. Moreover, the dislocation pile-up at the high-angle grain boundaries promoted the stress-induced phase transformation of the retained austenite.

Key wordsrare earth H13 steel    fracture mechanism    in situ TEM tension    parent austenite orientation reconstruction    martensite variant
收稿日期: 2020-05-06     
ZTFLH:  TG11  
基金资助:国家重点研发计划项目(2016YFB0300900);国家自然科学基金-辽宁联合基金项目(U1708251)
作者简介: 朱 健,男,1993年生,博士生
图1  原位拉伸试样形状和尺寸
图2  稀土H13钢热处理试样马氏体基体的明场像、暗场像和选区电子衍射(SAED)花样(a, b) retained austenite films (c, d) blocky retained austenite
图3  稀土H13钢热处理试样精细组织的TEM明场像(a) dislocation (b) precipitate (c) twin martensite(d) enlarged view of square area in Fig.3c (e) GBs (f) stacking fault
图4  稀土H13钢原位拉伸试样裂纹形貌的TEM像(a) main crack area I (b) main crack area II (c) secondary crack area
图5  拉伸杆行程由48.3 μm增加到110.7 μm时稀土H13钢原位拉伸试样微观组织形貌演化的TEM像(a) microvoid initiated from GBs and dislocation pile-up at GBs(b) dislocations across GBs and dislocation pile-up at carbides (c, d) dislocation wall, dislocation tangle and dislocation cell formed in different grains (e, f) newly formed dislocation pile-up at GBs and carbide
图6  稀土H13钢原位拉伸试样主裂纹附近区域微观组织的TEM像(a) crack initiated from the triple boundaries and dislocation free zone (DFZ)(b) dislocation pile-up and microvoid at carbide(c) DFZ and crack initiations along GBs (d~f) microvoid at carbide with size of 0.2 μm
图7  稀土H13钢原位拉伸试样主裂纹形貌的SEM像和裂纹边缘选区的离位EBSD分析Color online(a) left area of central perforation(b) right area of central perforation(c) Kikuchi band contrast map of square area in Fig.7b(d) phase distribution (red: retained austenite, blue: martensite)(e) inverse pole figure (IPF)
图8  稀土H13钢原位拉伸试样主裂纹边缘G1和G2选区的离位EBSD分析Color online(a) parent austenite orientation reconstruction (b, e) Kikuchi band contrast maps (c, f) phase maps (d, g) IPFs
图9  稀土H13钢原位拉伸试样主裂纹边缘G1和G2选区的马氏体和母相奥氏体取向分布Color online(a, d) parallel orientation relation between [1ˉ1ˉ1]α and [1ˉ01]γ directions (b, e) stereographic projection for parent austenite and martensite (c, f) parallel orientation relation between (011)α plane and (111)γ plane
图10  稀土H13钢原位拉伸试样主裂纹边缘G1和G2选区的马氏体和母相奥氏体取向重构计算结果Color online(a, d) boundary distributions (b, e) parent austenite orientation reconstructions (c, f) grain maps
图11  稀土H13钢原位拉伸试样主裂纹边缘G1和G2选区的离位EBSD数据计算结果Color online(a, d) band slopes of Kikuchi zone (b, e) twin distribution images (c, f) variant pairs distributions
图12  稀土H13钢原位拉伸试样主裂纹边缘G1和G2选区的变体对的晶界长度分数
[1] Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, A472: 198
[2] Zhou Q C, Wu X C, Shi N N, et al. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering [J]. Mater. Sci. Eng., 2011, A528: 5696
[3] Srivastava A, Joshi V, Shivpuri R, et al. A multi-layer coating architecture to reduce heat checking of die surfaces [J]. Surf. Coat. Technol., 2003, 163-164: 631
doi: 10.1016/S0257-8972(02)00690-4
[4] Zhang M L, Xing S M, Xin Q, et al. Abnormal failure analysis of H13 punches in steel squeeze casting process [J]. J. Iron Steel Res. Int., 2008, 15: 47
doi: 10.1016/S1006-706X(08)60124-7
[5] Sjöströ J, Bergström J. Thermal fatigue in hot-working tools [J]. Scand. J. Metall., 2005, 34: 221
doi: 10.1111/sjm.2005.34.issue-4
[6] Delagnes D, Rézaï-Aria F, Levaillant C. Influence of testing and tempering temperatures on fatigue behaviour, life and crack initiation mechanisms in a 5%Cr martensitic steel [J]. Procedia Eng., 2010, 2: 427
doi: 10.1016/j.proeng.2010.03.047
[7] Meng C, Zhou H, Tong X, et al. Comparison of thermal fatigue behaviour and microstructure of different hot work tool steels processed by biomimetic couple laser remelting process [J]. Mater. Sci. Technol., 2013, 29: 496
doi: 10.1179/1743284712Y.0000000169
[8] Oliver E C, Withers P J, Daymond M R, et al. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel [J]. Appl. Phys., 2002, 74A: S1143
[9] Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438
doi: 10.2355/isijinternational.43.438
[10] Van Slycken J, Verleysen P, Degrieck J, et al. High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels [J]. Metall. Mater. Trans., 2006, 37A: 1527
[11] Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron Steel, 2011, 46(6): 1
[11] (董 瀚, 曹文全, 时 捷等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(6): 1)
[12] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
doi: 10.1016/j.actamat.2014.10.052
[13] Wang R M, Liu J L, Song Y J. Progress and applications of in situ transmission electron microscopy [J]. Physics, 2015, 44: 96
doi: 10.7693/wl20150205
[13] (王荣明, 刘家龙, 宋源军. 原位透射电子显微学进展及应用 [J]. 物理, 2015, 44: 96)
[14] Mompiou F, Caillard D, Legros M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium [J]. Acta Mater., 2012, 60: 3402
doi: 10.1016/j.actamat.2012.02.049
[15] Voisin T, Krywopusk N M, Mompiou F, et al. Precipitation strengthening in nanostructured AZ31B magnesium thin films characterized by nano-indentation, STEM/EDS, HRTEM, and in situ TEM tensile testing [J]. Acta Mater., 2017, 138: 174
doi: 10.1016/j.actamat.2017.07.050
[16] Legros M, Gianola D S, Hemker K J. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films [J]. Acta Mater., 2008, 56: 3380
doi: 10.1016/j.actamat.2008.03.032
[17] Manchuraju S, Kroeger A, Somsen C, et al. Pseudoelastic deformation and size effects during in situ transmission electron microscopy tensile testing of NiTi [J]. Acta Mater., 2012, 60: 2770
doi: 10.1016/j.actamat.2012.01.043
[18] Yao T T, Du K, Wang H L, et al. In situ scanning and transmission electron microscopy investigation on plastic deformation in a metastable β titanium alloy [J]. Acta Mater., 2017, 133: 21
doi: 10.1016/j.actamat.2017.05.018
[19] Zárubová N, Gemperlová J, Gemperle A, et al. In situ TEM observation of stress-induced martensitic transformations and twinning processes in CuAlNi single crystals [J]. Acta Mater., 2010, 58: 5109
doi: 10.1016/j.actamat.2010.05.046
[20] Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
doi: 10.1016/j.actamat.2005.09.015
[21] Beausir B, Fressengeas C, Gurao N P, et al. Spatial correlation in grain misorientation distribution [J]. Acta Mater., 2009, 57: 5382
doi: 10.1016/j.actamat.2009.07.035
[22] Stormvinter A, Miyamoto G, Furuhara T, et al. Effect of carbon content on variant pairing of martensite in Fe-C alloy [J]. Acta Mater., 2012, 60: 7265
doi: 10.1016/j.actamat.2012.09.046
[23] Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
[24] Wang X L. Study on welding physical metallurgy behavior of high performance offshore engineering steel [D]. Beijing: University of Science and Technology Beijing, 2018
[24] (王学林. 高性能海洋工程用钢焊接物理冶金行为研究 [D]. 北京: 北京科技大学, 2018)
[25] Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, A704: 448
[26] Bachmann F, Hielscher R, Schaeben H. Texture analysis with MTEX-free and open source software toolbox [J]. Solid State Phenom., 2010, 160: 63
doi: 10.4028/www.scientific.net/SSP.160
[27] Nyyssönen T, Peura P, Kuokkala V T. Crystallography, morphology, and martensite transformation of prior austenite in intercritically annealed high-aluminum steel [J]. Metall. Mater. Trans., 2018, 49A: 6426
[28] Chen Q Z, Chu W Y, Wang B Y, et al. In situ TEM observations of nucleation and bluntness of nano cracks in thin crystals of 310 stainless steel [J]. Acta Metall. Mater., 1995, 43: 4371
doi: 10.1016/0956-7151(95)00122-C
[29] Zhang Y, Chu W Y, Wang Y B, et al. TEM observation of brittle microcrack nucleation of intermetallic compounds [J]. Sci. China, 1994, 24A: 551
[29] (张 跃, 褚武扬, 王燕斌等. 金属间化合物脆性微裂纹形核的TEM观察 [J]. 中国科学, 1994, 24A: 551)
[30] Gao K W, Chen Q Z, Chu W Y, et al. Nucleation and propagation of microcracks in nanoscale cleavage [J]. Sci. China, 1994, 24A: 993
[30] (高克玮, 陈奇志, 褚武扬等. 纳米级解理微裂纹的形核和扩展 [J]. 中国科学, 1994, 24A: 993)
[31] Chen Q Z, Chu W Y, Xiao J M. In situ observation and study of nucleation of ductile microcracks [J]. Sci. China, 1994, 24A: 291
[31] (陈奇志, 褚武扬, 肖纪美. 韧断微裂纹形核的原位观察与研究 [J]. 中国科学, 1994, 24A: 291)
[32] Huang W K, Kong F Y. Microstructure and mechanical property of cold drawn high strength 00Cr18Ni10N stainless steel wire [J]. Acta Metall. Sin., 2009, 45: 275
[32] (黄文克, 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能 [J]. 金属学报, 2009, 45: 275)
[33] Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel [J]. Mater. Sci. Eng., 2017, A687: 200
[34] Li H F, Wang S G, Zhang P, et al. Crack propagation mechanisms of AISI 4340 steels with different strength and toughness [J]. Mater. Sci. Eng., 2018, A729: 130
[35] Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission [J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
[36] Li S C, Zhu G M, Kang Y L. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C-1.1Si-1.7Mn steel [J]. J. Alloys Compd., 2016, 675: 104
doi: 10.1016/j.jallcom.2016.03.100
[37] Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing [J]. Acta Mater., 2003, 51: 101
doi: 10.1016/S1359-6454(02)00353-1
[38] Wang X L, Wang Z Q, Ma X P, et al. Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure [J]. Mater. Charact., 2018, 140: 312
doi: 10.1016/j.matchar.2018.03.037
[39] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
doi: 10.1016/S1359-6454(02)00577-3
[40] Rancel L, Gómez M, Medina S F, et al. Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel [J]. Mater. Sci. Eng., 2011, A530: 21
[41] Morito S, Saito H, Ogawa T. Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels [J]. ISIJ Int., 2005, 45: 91
doi: 10.2355/isijinternational.45.91
[42] Morris J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
doi: 10.2355/isijinternational.43.410
[43] Wang J L, Madsen G K H, Drautz R. Grain boundaries in bcc-Fe: A density-functional theory and tight-binding study [J]. Modell. Simul. Mater. Sci. Eng., 2018, 26: 025008
doi: 10.1088/1361-651X/aa9f81
[44] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Mater., 2004, 52: 2337
doi: 10.1016/j.actamat.2004.01.025
[45] Wang S H, Li J, Ge X, et al. Microstructural evolution and work hardening behavior of Fe-19Mn alloy containing duplex austenite and ε-martensite [J]. Acta Metall. Sin., 2020, 56: 311
[45] (王世宏, 李 健, 葛 昕等. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为 [J]. 金属学报, 2020, 56: 311)
[1] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[2] 王庆娟,周晓,梁博,周滢. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*[J]. 金属学报, 2016, 52(11): 1477-1483.
[3] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[4] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[5] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[6] 黄志伟; 袁福河; 王中光; 朱世杰; 王富岗 . M38镍基高温合金高温低周疲劳性能及断裂机制[J]. 金属学报, 2007, 43(10): 1025-1030 .
[7] 黄立业; 徐可为; 吕坚 . 类金刚石碳膜在纳米划擦过程中的弹-塑性变形及断裂机制分析[J]. 金属学报, 2001, 37(7): 733-736 .
[8] 秦蜀懿; 张国定 . 高强度高韧性铝合金基复合材料的制备和断裂机制[J]. 金属学报, 2000, 36(3): 325-328 .
[9] 陆永浩; 张永刚; 乔利杰; 王燕斌; 陈昌麒; 褚武扬 . 全层状结构的γ-TiAl中裂纹扩展的TEM原位观察[J]. 金属学报, 1999, 35(12): 1233-1236 .
[10] 王自东;胡汉起;李春玉;刘伯操. 金属基“内晶型”复合材料及其制备[J]. 金属学报, 1995, 31(13): 40-43.
[11] 杨扬;张新明;李正华;李青云. TA2/A3爆炸复合界面微观断裂机制的SEM原位研究[J]. 金属学报, 1994, 30(9): 409-415.
[12] 刘中豪;陈廉. 含氢马氏体时效钢低温力学性能行为与断裂机制[J]. 金属学报, 1990, 26(4): 54-61.
[13] 邢志强;黄淑菊;宋余九;涂铭旌. 低碳钢的组织对腐蚀疲劳的影响[J]. 金属学报, 1988, 24(6): 476-481.