Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 736-748    DOI: 10.11900/0412.1961.2020.00331
  研究论文 本期目录 | 过刊浏览 |
高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响
王学1,2(), 李勇2,3, 王家庆3, 胡磊1
1.安徽工业大学 先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243032
2.武汉大学 动力与机械学院 武汉 430072
3.大唐锅炉压力容器检验中心有限公司 合肥 230088
Effect of High Temperature Ageing on Microstructure and Stress-Relief Cracking Susceptibility of Coarse Grain Heat Affected Zone in T23 steel
WANG Xue1,2(), LI Yong2,3, WANG Jiaqing3, HU Lei1
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
2.School of Power and Mechanics, Wuhan University, Wuhan 430072, China
3.Da Tang Boiler Pressure Vessel Inspection Center Co. , Ltd. , Hefei 230088, China
引用本文:

王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
Xue WANG, Yong LI, Jiaqing WANG, Lei HU. Effect of High Temperature Ageing on Microstructure and Stress-Relief Cracking Susceptibility of Coarse Grain Heat Affected Zone in T23 steel[J]. Acta Metall Sin, 2021, 57(6): 736-748.

全文: PDF(29869 KB)   HTML
摘要: 

利用热模拟机制备T23钢粗晶热影响区(CGHAZ)试样,对其进行650℃、0~48 h时效实验,对时效前后的试样进行高温短时蠕变破断实验,评价其再热裂纹敏感性,采用OM、SEM、TEM + EDS等手段分析CGHAZ在时效过程中的显微组织演变,对断口形貌及断口附近显微组织进行观察,分析合金元素在晶界附近的分布,揭示T23钢CGHAZ形成再热裂纹的机理,探究时效改善再热裂纹敏感性的原因。结果表明,T23钢CGHAZ在焊态下为马氏体/贝氏体混合组织,硬度较高;经650℃时效后组织发生回复及再结晶,位错密度下降,亚晶粒(板条)尺寸增大,M23C6M7C3MX碳(氮)化物等在晶内、晶界逐渐析出,硬度逐渐下降。焊态CGHAZ对再热裂纹敏感,时效后CGHAZ的再热裂纹敏感性下降;当时效时间超过24 h时,对再热裂纹不敏感。焊态CGHAZ产生再热裂纹主要是由于M23C6在晶界析出长大,导致晶界形成软化区,并促进孔洞的形成,减弱了晶间结合力。时效使不稳定的CGHAZ组织发生预先转变,碳化物大量析出,基体发生回复与再结晶,降低了晶内强度,同时晶界附近合金元素贫化消除,晶内和晶界强度的差异减小,塑性变形能力明显提升,故再热裂纹敏感性降低。CGHAZ时效后的硬度与再热裂纹敏感性有一定的对应关系,当硬度高于250 HB时对再热裂纹敏感,硬度低于250 HB时对再热裂纹不敏感。

关键词 T23钢粗晶热影响区时效再热裂纹    
Abstract

Owing to its high creep rupture strength, good weldability, and low costs, T23 steel is an ideal material for manufacturing the heating components of water walls, superheaters and reheaters in ultra-super critical plants. However, its coarse grain heat affected zone (CGHAZ) is prone to stress-relief cracking (SRC) during post-weld heat treatment or high-temperature service. The mechanism of SRC is controversial and an effective method for forecasting and preventing SRC in T23 components is currently lacking. Clarifying the mechanism of SRC in the CGHAZ of T23 steel, and developing a practical engineering technique for predicting and preventing SRC generation, are therefore essential. In this work, CGHAZ specimens of T23 steel were simulated in a thermo-mechanical simulator, and aged at 650oC for 0-48 h. After simulating the microstructure evolution of the as-welded CGHAZ during service, the SRC susceptibility of the CGHAZ was evaluated. The microstructural changes and carbide precipitation were observed by OM, SEM, TEM, and EDS. The as-welded CGHAZ of T23 steel was composed of mixed martensite and bainite with high hardness. After ageing at 650oC, the structure recovered and recrystallized with a lower dislocation density and larger sub-grains than the as-welded CGHAZ. Carbides such as M23C6, M7C3, and MX gradually precipitated inside the grains and grain boundaries, decreasing the hardness. The SRC susceptibility was high in the as-welded CGHAZ, but decreased with increasing ageing time. When the ageing time exceeded 24 h, the sample was SRC-resistant. The main cause of SRC in the CGHAZ was precipitation and growth of M23C6 on the grain boundaries, which induced the formation of softened zones in the matrix near the grain boundary, and promoted the formation of micro-voids. During ageing, the unstable microstructure in the as-welded CGHAZ transformed as carbides precipitated and the matrix recrystallized, thereby reducing the intragranular strength. Meanwhile, the depletion of alloy elements near the grain boundary was eliminated. The microstructural evolution decreased the difference between the intragranular and intergranular strengths in the CGHAZ. Finally, the CGHAZ showed significantly improved ductility and low SRC susceptibility. The hardness of the aged CGHAZ was positively related to the SRC susceptibility. At hardnesses above 250 HB, the CGHAZ was SRC-susceptible, but at hardnesses below 250 HB, the CGHAZ was SRC-resistant.

Key wordsT23 steel    coarse grain heat affected-zone    ageing    stress-relief cracking
收稿日期: 2020-08-27     
ZTFLH:  TG404  
基金资助:国家自然科学基金项目(51574181);四川省科技计划项目(2018JY0668)
作者简介: 王 学,男,1971年生,教授,博士
图1  再热裂纹敏感性评价试样形状示意图及热过程曲线
图2  T23钢试样粗晶热影响区(CGHAZ)在650℃时效前后的OM像
图3  T23钢试样CGHAZ在650℃时效前后的SEM像
图4  T23钢试样CGHAZ在650℃时效不同时间后的TEM像
图5  T23钢试样CGHAZ在650℃时效前后的硬度
图6  T23钢试样CGHAZ在时效前后的断面收缩率与拉伸实验温度的关系
图7  在650℃时效不同时间T23钢试样CGHAZ的750℃拉伸断口形貌
图8  焊态和在650℃时效48 h的T23钢试样CGHAZ在750℃拉断后断口附近纵截面的SEM像(a, b) as-welded (c, d) as aged at 650oC for 48 h
图9  焊态和在650℃时效48 h的T23钢试样CGHAZ在750℃短时拉伸后的TEM像(a, b) as-welded (Inset in Fig.9a shows the corresponding EDS analysis) (c, d) aged at 650oC for 48 h (Insets show the high magnified images of lath interior in Fig.9c and laths in Fig.9d)
图10  焊态T23钢试样CGHAZ在750℃拉断后晶界附近合金元素的EDS线扫描结果
图11  在650℃时效48 h的T23钢试样CGHAZ在750℃拉伸时晶界附近合金元素的EDS线扫描结果
图12  时效影响T23钢CGHAZ再热裂纹敏感性机理示意图
T / oC6 h24 h48 h
55061124444889
50096593863577269
表1  在650℃时效不同时间的T23钢试样CGHAZ的等效时效条件 (h)
1 Bendick W, Gabrel J, Hahn B, et al. New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application [J]. Int. J. Pressure Vessels Pip., 2007, 84: 13
2 Arndt J, Haarmann K, Kottmann G, et al. The T23/T24 Book-New Grades for Waterwalls and Superheaters [M]. Vallourec & Mannesmann Tubes, 1998: 24
3 Igarashi M, Yoshizawa M, Matsuo H, et al. Long-term creep properties of low C-2.25Cr-1.6W-V-Nb steel (T23/P23) for fossil fired and heat recovery boilers [J]. Mater. Sci. Eng., 2009, A510-511: 104
4 Kucharova K, Sklenicka V, Kvapilova M, et al. Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23) [J]. Mater. Charact., 2015, 109: 1
5 Vaillant J C, Vandenberghe B, Hahn B, et al. T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience [J]. Int. J. Pressure Vessels Pip., 2008, 85: 38
6 Yang F, Zhang Y L, Ren Y N, et al. Welding of New Type Heat-resistant Steels [M]. Beijing: China Electric Power Press, 2006: 79
6 杨 富, 章应霖, 任永宁等. 新型耐热钢焊接 [M]. 北京: 中国电力出版社, 2006: 79
7 Wang X, Xu D L, Chen Y C, et al. The reheat cracking susceptibility of T23 (7CrWVMoNb9-6) steel [J]. Mater. Sci. Technol., 2009, 17(): 172
7 王 学, 徐德录, 陈玉成等. T23钢再热裂纹敏感性 [J]. 材料科学与工艺, 2009, 17(): 172
8 Zhang B, Gao Z Y, Wang D T, et al. Tests studies on HCM2S steel's susceptibility to reheat cracking [J]. J. Power Eng., 2006, 26: 300
8 张 波, 高子瑜, 王德泰等. HCM2S钢再热裂纹敏感性的试验研究 [J]. 动力工程, 2006, 26: 300
9 Dhooge A, Vekeman J. New generation 21/4Cr steels T/P 23 and T/P 24 weldability and high temperature properties [J]. Weld. World, 2005, 49: 75
10 Nawrocki J G, Dupont J N, Robino C V, et al. The stress-relief cracking susceptibility of a new ferritic steel—Part 1: Single-pass heat-affected zone simulations [J]. Weld. J., 2000, 79: 355s
11 Long H G, Long Y, Chen H D. Mechanism of T23/12Cr1MoV dissimilar steel welding failure in high temperature reheater [J]. Electr. Power, 2011, 44(5): 70
11 龙会国, 龙 毅, 陈红冬. 高温再热器T23/12Cr1MoV异种钢焊缝失效机理 [J]. 中国电力, 2011, 44(5): 70
12 Hippsley C A, Knott J F, Edwards B C. A study of stress relief cracking in 214Cr 1 Mo steel—I. The effects of P segregation [J]. Acta Metall., 1980, 28: 869
13 Shin J, McMahon C J. Mechanisms of stress relief cracking in a ferritic steel[J]. Acta Metall., 1984, 32: 1535
14 Kanazawa S, Yamato K, Takeda T, et al. Study of reheat cracking in weldment (report 2): Relation between cracking susceptibility and some properties of HAZ at high temperature [J]. Trans. Jpn. Weld. Soc., 1977, 8: 119
15 Magula V, Grman D, Patscheider J. Segregation of impurities on grain boundaries in tests of resistance to “reheat and underclad” cracking [J]. Scr. Mater., 1997, 37: 1811
16 Tamaki K, Suzuki J, Tajiri M. Effect of Vanadium and Titanium on reheat cracking sensitivity: Study of reheat cracking of Cr-Mo steels (report 4) [J]. Trans. Jpn. Weld. Soc., 1984, 15: 17
17 Ito Y, Nakanishi M. Study on stress relief cracking in welded low alloy steels (report 1): The investigation of the condition under which stress relief cracking may occur [J]. J. Jpn. Weld. Soc., 1971, 40: 1261
18 Balaguer J P, Wang Z, Nippes E F. Stress-relief cracking of a copper-containing HSLA steel [J]. Weld. J., 1989, 68: 121s
19 Ito Y, Nakanishi M. Study on stress relief cracking in welded low alloy steels (report 2): The investigation of stress relief cracking susceptibility on low alloy steels [J]. J Jpn. Weld. Soc., 1972, 41: 59
20 Nawrocki J G, Dupont J N, Robino C V, et al. The mechanism of stress-relief cracking in a ferritic alloy steel [J]. Weld. J., 2003, 82(2): 25s
21 Li Y, Wang X, Wang J Q, et al. Stress-relief cracking mechanism in simulated coarse-grained heat-affected zone of T23 steel [J]. J. Mater. Process. Technol., 2019, 266: 73
22 Pilling J, Ridley N. Tempering of 2.25 Pct Cr-1 Pct Mo low carbon steels [J]. Metall. Trans., 1982, 13A: 557
23 Yu Z S, Nie M, Hou S F, et al. The carbide contained in HCM2S (T23) steel and evolution regularity thereof [J]. Therm. Power Gener., 2012, 41(9): 1
23 于在松, 聂 铭, 侯淑芳等. HCM2S(T23)钢中的碳化物及其演化规律 [J]. 热力发电, 2012, 41(9): 1
24 Zieliński A, Golański G, Sroka M, et al. Microstructure and mechanical properties of the T23 steel after long-term ageing at elevated temperature [J]. Mater. High Temp., 2016, 33: 154
25 Miyata K, Igarashi M, Sawaragi Y. Effect of trace elements on creep properties of 0.06C-2.25Cr-1.6W-0.1Mo-0.25V-0.05Nb steel [J]. ISIJ Int., 1999, 39: 947
26 Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, A438-440: 237
27 Anderson T L. Fracture Mechanics: Fundamentals and Applications [M]. 4th Ed., New York: CRC Press, 2017: 233
28 Cane B J, Middleton C J. Intergranular creep-cavity formation in low-alloy bainitic steels [J]. Met. Sci., 1981, 15: 295
29 Qian Z P. Deformation and Fracture of Materials [M]. Shanghai: Tongji University Press, 1989: 139
29 钱志屏. 材料的变形与断裂 [M]. 上海: 同济大学出版社, 1989: 139
30 Yin Y F, Faulkner R G. Model predictions of grain boundary chromium depletion in Inconel 690 [J]. Corros. Sci., 2007, 49: 2177
31 Chen B, Hao X C, Ma Y C, et al. Effects of nitrogen addition on microstructure and grain boundary microchemistry of Inconel alloy 690 [J]. Acta Metall. Sin., 2017, 53: 983
31 陈 波, 郝宪朝, 马颖澈等. 添加N对Inconel 690合金显微组织和晶界微区成分的影响 [J]. 金属学报, 2017, 53: 983
32 Wang X, Li X Q, Yang C, et al. Aging properties of T23 weld joint in water wall of USC boilers [J]. J. Chin. Soc. Power Eng., 2015, 35: 325
32 王 学, 李夕强, 杨 超等. 超超临界锅炉水冷壁T23接头时效性能 [J]. 动力工程学报, 2015, 35: 325
33 Mohyla P, Foldyna V. Improvement of reliability and creep resistance in advanced low-alloy steels [J]. Mater. Sci. Eng., 2009, A510-511: 234
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[11] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[12] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[13] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
[14] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.
[15] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.