Please wait a minute...
金属学报  2020, Vol. 56 Issue (4): 444-458    DOI: 10.11900/0412.1961.2019.00427
  综述 本期目录 | 过刊浏览 |
汽车用先进高强钢的氢脆研究进展
李金许(),王伟,周耀,刘神光,付豪,王正,阚博
北京科技大学腐蚀与防护中心 北京 100083
A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels
LI Jinxu(),WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(11030 KB)   HTML
摘要: 

本文总结了第一代~第三代先进高强钢的各自典型代表钢种——相变诱发塑性钢(TRIP钢)、孪晶诱发塑性钢(TWIP钢)、淬火配分钢(QP钢)和中锰钢的氢脆研究现状和重要结果。主要结论为,TRIP钢的氢脆敏感性主要体现在塑性降低,而强度损失不大。TWIP钢的氢脆敏感性严重依赖于应变速率,即随应变速率降低而显著增加;形变孪晶界和ε/γ相界面易发生氢致开裂,而Σ3退火孪晶界不易开裂;深入研究表明,当ε/γ相界面满足西山取向关系时,则与Σ3孪晶界类似,能够阻碍氢致裂纹扩展,这一结论将不同学者的结果统一起来。QP钢的氢脆敏感性与TRIP钢相似。中锰钢因含有较多的奥氏体相,变形时伴随着强烈的TRIP效应,氢脆敏感性较大,既有明显的塑性损失也有较大的强度损失。对含有奥氏体组织的TRIP钢、QP钢和中锰钢等,调控奥氏体组织的形态和分布是改善其氢脆的主要对策;而对TWIP钢则可通过控制预应变速率和Al合金化等措施来改善氢脆。

关键词 先进高强钢TRIP钢TWIP钢氢脆    
Abstract

This paper overviewed the current research status and important results of the hydrogen embrittlement (HE) of the representative steel types from 1st to 3rd generation advanced high-strength steel (AHSS): transformation induced plasticity (TRIP) steel, twinning-induced plasticity (TWIP) steel, quenching & partitioning (QP) steel and medium manganese steel. The main conclusions are as follows: the HE sensitivity of TRIP steel is mainly reflected in the reduction of plasticity and the small loss of strength. The HE sensitivity of TWIP steel depends heavily on the strain rate, i.e., the HE susceptibility is significantly increased as the strain rate decreases. Deformation twin boundaries and ε/γ phase interfaces are generally prone to hydrogen-induced cracking, while Σ3 annealing twin boundaries are not. However, the ε/γ phase interfaces with Nishiyama-Wassermann orientation relationship, which is similar to the Σ3 twin boundaries, could hinder the propagation of hydrogen-induced cracks. HE sensitivity of QP steel is similar to that of TRIP steel. For medium manganese steel containing a large volume fraction of austenite phase, which result in a strong TRIP effect during deformation, the HE susceptibility represented by plasticity loss and strength loss is very high. For TRIP steel, QP steel and medium manganese steel with austenite structure, the main strategy to improve their hydrogen embrittlement is to control the morphology and distribution of austenite structure; for TWIP Steel, the measures to improve hydrogen embrittlement can be taken by controlling the prestrain rate and Al Alloying.

Key wordsAHSS    TRIP steel    TWIP steel    hydrogen embrittlement
收稿日期: 2019-12-11     
ZTFLH:  TG14,TG17  
基金资助:国家自然科学基金项目(U1760203);国家自然科学基金项目(51571029)
通讯作者: 李金许     E-mail: jxli65@ustb.edu.cn
Corresponding author: Jinxu LI     E-mail: jxli65@ustb.edu.cn
作者简介: 李金许,女,1965年生,教授

引用本文:

李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
Jinxu LI, Wei WANG, Yao ZHOU, Shenguang LIU, Hao FU, Zheng WANG, Bo KAN. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels. Acta Metall Sin, 2020, 56(4): 444-458.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00427      或      https://www.ams.org.cn/CN/Y2020/V56/I4/444

图1  TRIP (相变诱发塑性) 780钢在不同充氢条件下的工程拉伸应力-应变曲线[15]
图2  Fe-1.6Mn-0.4Si-0.17C-(0.5~2)Al TRIP钢裂纹沿马氏体/铁素体或马氏体/贝氏体界面扩展[24]
图3  应变速率为1×10-5 s-1时Fe-18Mn-0.6C TWIP (孪晶诱发塑性)钢的氢致裂纹萌生[40]
图4  应变速率1×10-6 s-1时Fe-18Mn-0.6C TWIP钢的氢致裂纹萌生[40]
图5  Fe-18Mn-0.6C钢在2种应变速率下的动态充氢拉伸曲线[40]
图6  Fe-0.22C-1.40Si-1.80Mn QP (淬火配分) 980钢在不同H含量下的工程应力-应变曲线[73]
图7  Fe-0.22C-1.40Si-1.80Mn QP钢中氢致裂纹的形核和扩展[73]
图8  Fe-7Mn-0.1C-0.5Si 冷轧和热轧中锰钢充氢前后应力-应变曲线和EBSD像[98]
图9  回火和退火中锰钢充氢前后的拉伸曲线
[1] Johnson W H. II. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Proc. Roy. Soc. London, 1875, 23: 156
[2] Bleck W, Prahl U, Song W W. Control of the mechanical behavior of high Mn steels by extrinsic and intrinsic parameters [A]. Proceedings of the 1st International Conference on Automobile Steel & the 3rd International Conference on High Manganese Steels [C]. Chengdu: Metallurgical Industry Press, 2016: 49
[3] Huang J N, Tang Z Y, Ding H, et al. Combining a novel cyclic pre-quenching and two-stage heat treatment in a low-alloyed TRIP-aided steel to significantly enhance mechanical properties through microstructural refinement [J]. Mater. Sci. Eng., 2019, A764: 138231
[4] Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel [J]. Acta Mater., 2004, 52: 2765
[5] Yu H Y, Gao Y K, Meng D J. Transformation behavior of retained austenite under different deformation modes for low alloyed TRIP-assisted steels [J]. Mater. Sci. Eng., 2006, A441: 331
[6] Li Y, Li W, Hu J C, et al. Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance [J]. Int. J. Plast., 2017, 88: 53
[7] Maresca F, Kouznetsova V G, Geers M G D, et al. Contribution of austenite-martensite transformation to deformability of advanced high strength steels: From atomistic mechanisms to microstructural response [J]. Acta Mater., 2018, 156: 463
[8] Raabe D, Sandl?bes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61: 6132
[9] Allen Q S, Nelson T W. Microstructural evaluation of hydrogen embrittlement and successive recovery in advanced high strength steel [J]. J. Mater. Process. Technol., 2019, 265: 12
[10] Zhou P W, Li W, Zhao H S, et al. Role of microstructure on electrochemical hydrogen permeation properties in advanced high strength steels [J]. Int. J. Hydrogen Energy, 2018, 43: 10905
[11] Lu X, Ma Y, Zamanzade M, et al. Insight into hydrogen effect on a duplex medium-Mn steel revealed by in-situ nanoindentation test [J]. Int. J. Hydrogen Energy, 2019, 44: 20545
[12] Kim S J, Yun D W, Suh D W, et al. Electrochemical hydrogen permeation measurement through TRIP steel under loading condition of phase transition [J]. Electrochem. Commun., 2012, 24: 112
[13] Ryu J H, Chun Y S, Lee C S, et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel [J]. Acta Mater., 2012, 60: 4085
[14] Hojo T, Koyama M, Terao N, et al. Transformation-assisted hydrogen desorption during deformation in steels: Examples of α′- and ε-martensite [J]. Int. J. Hydrogen Energy, 2019, 44: 30472
[15] Zhu X, Li W, Zhao H S, et al. Effects of cryogenic and tempered treatment on the hydrogen embrittlement susceptibility of TRIP-780 steels [J]. Int. J. Hydrogen Energy, 2013, 38: 10694
[16] Yang X F, Yu H, Song C H, et al. Hydrogen trapping behavior in vanadium microalloyed TRIP-assisted annealed martensitic steel [J]. Metals, 2019, 9: 741
[17] Sun B H, Krieger W, Rohwerder M, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels [J]. Acta Mater., 2020, 183: 313
[18] Sojka J, Vodárek V, Schindler I, et al. Effect of hydrogen on the properties and fracture characteristics of TRIP 800 steels [J]. Corros. Sci., 2011, 53: 2575
[19] Laureys A, Depover T, Petrov R, et al. Influence of sample geometry and microstructure on the hydrogen induced cracking characteristics under uniaxial load [J]. Mater. Sci. Eng., 2017, A690: 88
[20] Depover T, Pérez Escobar D, Wallaert E, et al. Effect of hydrogen charging on the mechanical properties of advanced high strength steels [J]. Int. J. Hydrogen Energy, 2014, 39: 4647
[21] Zhang Y J, Shao C W, Wang J J, et al. Intercritical annealing temperature dependence of hydrogen embrittlement behavior of cold-rolled Al-containing medium-Mn steel [J]. Int. J. Hydrogen Energy, 2019, 44: 22355
[22] Papula S, Sarikka T, Anttila S, et al. Hydrogen-induced delayed cracking in TRIP-aided lean-alloyed ferritic-austenitic stainless steels [J]. Materials, 2017, 10: 613
[23] Laureys A, Depover T, Petrov R, et al. Characterization of hydrogen induced cracking in TRIP-assisted steels [J]. Int. J. Hydrogen Energy, 2015, 40: 16901
[24] Laureys A, Depover T, Petrov R, et al. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD [J]. Mater. Charact., 2016, 112: 169
[25] Zhang Z, Koyama M, Wang M M, et al. Microstructural mechanisms of fatigue crack non-propagation in TRIP-maraging steels [J]. Int. J. Fatigue, 2018, 113: 126
[26] Cameron B C, Koyama M, Tasan C C. Phase stability effects on hydrogen embrittlement resistance in martensite-reverted austenite steels [J]. Metall. Mater. Trans., 2019, 50A: 29
[27] Laureys A, Depover T, Verbeken K. Effect of environmental and internal hydrogen on the hydrogen assisted cracking behavior of TRIP-assisted steel [J]. Mater. Sci. Eng., 2019, A739: 437
[28] Gr?ssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
[29] Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels [J]. Mater. Sci. Eng., 2011, A528: 2922
[30] Koyama M, Akiyama E, Tsuzaki K. Hydrogen embrittlement in a Fe-Mn-C ternary twinning-induced plasticity steel [J]. Corros. Sci., 2012, 54: 1
[31] Koyama M, Akiyama E, Tsuzaki K. Effect of hydrogen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel [J]. Corros. Sci., 2012, 59: 277
[32] Kim Y, Kang N, Park Y, et al. Effects of the strain induced martensite transformation on the delayed fracture for Al-added TWIP Steel [J]. J. Korean Inst. Metall. Mater., 2008, 46: 780
[33] Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
[34] Yu Y N. Principles of Metallography [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2013: 937
[34] 余永宁. 金属学原理 [M]. 第2版,北京: 冶金工业出版社, 2013: 937
[35] Michler T, Naumann J. Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels [J]. Int. J. Hydrogen Energy, 2010, 35: 1485
[36] Koyama M, Akiyama E, Sawaguchi T, et al. Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel [J]. Scr. Mater., 2012, 66: 459
[37] Koyama M, Akiyama E, Sawaguchi T, et al. Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel [J]. Corros. Sci., 2013, 75: 345
[38] Koyama M, Akiyama E, Tsuzaki K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging [J]. Acta Mater., 2013, 61: 4607
[39] Ryu J H, Kim S K, Lee C S, et al. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe-Mn-C steel [J]. Proc. Roy. Soc., 2013, 469A: 20120458
[40] Fu H, Wang W, Zhao H Y, et al. Study of hydrogen-induced delayed fracture in high-Mn TWIP/TRIP steels during in situ electrochemical hydrogen-charging: Role of microstructure and strain rate in crack initiation and propagation [J]. Corros. Sci., 2020, 162: 108191
[41] Kwon Y J, Seo H J, Kim J N, et al. Effect of grain boundary engineering on hydrogen embrittlement in Fe-Mn-C TWIP steel at various strain rates [J]. Corros. Sci., 2018, 142: 213
[42] Kwon Y J, Jung S P, Lee B J, et al. Grain boundary engineering approach to improve hydrogen embrittlement resistance in Fe-Mn-C TWIP steel [J]. Int. J. Hydrogen Energy, 2018, 43: 10129
[43] Fu H, Wang W, Chen X J, et al. Grain boundary design based on fractal theory to improve intergranular corrosion resistance of TWIP steels [J]. Mater. Des., 2020, 185: 108253
[44] Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels [J]. Scr. Mater., 2013, 68: 343
[45] Koyama M, Okazaki S, Sawaguchi T, et al. Hydrogen embrittlement susceptibility of Fe-Mn binary alloys with high Mn content: Effects of stable and metastable ε-martensite, and Mn concentration [J]. Metall. Mater. Trans., 2016, 47A: 2656
[46] Chun Y S, Kim J S, Park K T, et al. Role of ε martensite in tensile properties and hydrogen degradation of high-Mn steels [J]. Mater. Sci. Eng., 2012, A533: 87
[47] Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels [J]. Acta Mater., 2016, 103: 264
[48] Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels [J]. Acta Mater., 2012, 60: 4950
[49] Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
[50] Yao M J, Dey P, Seol J B, et al. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel [J]. Acta Mater., 2016, 106: 229
[51] Koyama M, Springer H, Merzlikin S V, et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe-Mn-Al-C light weight austenitic steel [J]. Int. J. Hydrogen Energy, 2014, 39: 4634
[52] Ahn D C, Sofronis P, Dodds R H. On hydrogen-induced plastic flow localization during void growth and coalescence [J]. Int. J. Hydrogen Energy, 2007, 32: 3734
[53] Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels [J]. Metall. Mater. Trans., 2012, 43A: 1870
[54] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe-Mn-C TWIP steels in aqueous solutions and the related hydrogen absorption [J]. Corros. Sci., 2014, 83: 234
[55] Park I J, Jeong K H, Jung J G, et al. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels [J]. Int. J. Hydrogen Energy, 2012, 37: 9925
[56] Chen F C, Chou C P, Li P, et al. Effect of aluminium on TRIP Fe-Mn-Al alloy steels at room temperature [J]. Mater. Sci. Eng., 1993, A160: 261
[57] Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition [J]. Mater. Sci. Eng., 2010, A527: 3651
[58] Jin J E, Lee Y K. Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel [J]. Acta Mater., 2012, 60: 1680
[59] Han D K, Kim Y M, Han H N, et al. Hydrogen and aluminium in high-manganese twinning-induced plasticity steel [J]. Scr. Mater., 2014, 80: 9
[60] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe-Mn-C TWIP steels [J]. Corros. Sci., 2014, 82: 218
[61] Bal B, Koyama M, Gerstein G, et al. Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas [J]. Int. J. Hydrogen Energy, 2016, 41: 15362
[62] Tien J, Thompson A W, Bernstein I M, et al. Hydrogen transport by dislocations [J]. Metall. Trans., 1976, 7A: 821
[63] Frankel G S, Latanision R M. Hydrogen transport during deformation in nickel: Part II. Single crystal nickel [J]. Metall. Trans., 1986, 17A: 869
[64] Dadfarnia M, Martin M L, Nagao A, et al. Modeling hydrogen transport by dislocations [J]. J. Mech. Phys. Solids, 2015, 78: 511
[65] Koyama M, Akiyama E, Tsuzaki K. Hydrogen-induced delayed fracture of a Fe-22Mn-0.6C steel pre-strained at different strain rates [J]. Scr. Mater., 2012, 66: 947
[66] Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
[67] Ebner S, Suppan C, Stark A, et al. Austenite decomposition and carbon partitioning during quenching and partitioning heat treatments studied via in-situ X-ray diffraction [J]. Mater. Des., 2019, 178: 107862
[68] Celada-Casero C, Kwakernaak C, Sietsma J, et al. The influence of the austenite grain size on the microstructural development during quenching and partitioning processing of a low-carbon steel [J]. Mater. Des., 2019, 178: 107847
[69] Choi K S, Zhu Z H, Sun X, et al. Determination of carbon distributions in quenched and partitioned microstructures using nanoscale secondary ion mass spectroscopy [J]. Scr. Mater., 2015, 104: 79
[70] Zhu X, Li W, Hsu T Y, et al. Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment [J]. Scr. Mater., 2015, 97: 21
[71] Wang Z, Luo Z C, Huang M X. Revealing hydrogen-induced delayed fracture in ferrite-containing quenching and partitioning steels [J]. Materialia, 2018, 4: 260
[72] Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen influence on some advanced high-strength steels [J]. Corros. Sci., 2017, 125: 114
[73] Zhu X, Li W, Zhao H S, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel [J]. Int. J. Hydrogen Energy, 2014, 39: 13031
[74] Liu Q L, Zhou Q J, Venezuela J, et al. The role of the microstructure on the influence of hydrogen on some advanced high-strength steels [J]. Mater. Sci. Eng., 2018, A715: 370
[75] Yang J L, Huang F, Guo Z H, et al. Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure [J]. Mater. Sci. Eng., 2016, A665: 76
[76] Liu Q L, Zhou Q J, Venezuela J, et al. Hydrogen concentration in dual-phase (DP) and quenched and partitioned (Q&P) advanced high-strength steels (AHSS) under simulated service conditions compared with cathodic charging conditions [J]. Adv. Eng. Mater., 2016, 18: 1588
[77] Liu Q L, Venezuela J, Zhang M X, et al. Hydrogen trapping in some advanced high strength steels [J]. Corros. Sci., 2016, 111: 770
[78] Yang J L, Song Y S, Lu Y F, et al. Effect of ferrite on the hydrogen embrittlement in quenched-partitioned-tempered low carbon steel [J]. Mater. Sci. Eng., 2018, A712: 630
[79] Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, A658: 400
[80] Zhou P W, Li W, Jin X J. Comparison of hydrogen permeation properties of pure Ni, Ni-MoS2, Ni-graphene composite coatings deposited on quenching and partitioning steel and the hot-dipping galvanized steel [J]. J. Electrochem. Soc., 2017, 164: D394
[81] Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel [J]. Chin. J. Eng., 2019, 41: 557
[81] 徐娟萍, 付 豪, 王 正等. 中锰钢的研究进展与前景 [J]. 工程科学学报, 2019, 41: 557
[82] Yan S, Liu X H, Liu W J, et al. Microstructural evolution and mechanical properties of low-carbon steel treated by a two-step quenching and partitioning process [J]. Mater. Sci. Eng., 2015, A640: 137
[83] Zou Y, Xu Y B, Hu Z P, et al. Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate [J]. Mater. Sci. Eng., 2016, A675: 153
[84] Suh D W, Kim S J. Medium Mn transformation-induced plasticity steels: Recent progress and challenges [J]. Scr. Mater., 2017, 126: 63
[85] Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite+martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
[86] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
[87] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content [J]. Acta Mater., 2015, 84: 229
[88] Han J, Lee S J, Lee C Y, et al. The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J]. Mater. Sci. Eng., 2015, A633: 9
[89] Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite [J]. Mater. Sci. Eng., 2017, A688: 40
[90] da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling [J]. Acta Mater., 2017, 124: 305
[91] Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility in high-strength steels [J]. Trans. ASM, 1967, 60: 252
[92] Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel [J]. Mater. Sci. Eng., 2017, A687: 200
[93] Zhang R, Cao W Q, Peng Z J, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel [J]. Mater. Sci. Eng., 2013, A583: 84
[94] Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands [J]. Mater. Sci. Eng., 2017, A679: 230
[95] Wang C, Cao W Q, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel [J]. Mater. Sci. Eng., 2013, A562: 89
[96] Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system [J]. J. Alloys Compd., 2017, 691: 51
[97] Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite [J]. Scr. Mater., 2018, 146: 60
[98] Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel [J]. Acta Mater., 2016, 113: 1
[99] Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
[100] Wang M M, Tasan C C, Koyama M, et al. Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite [J]. Metall. Mater. Trans., 2015, 46A: 3797
[101] Shao C W, Hui W J, Zhang Y J, et al. Effect of intercritical annealing time on hydrogen embrittlement of warm-rolled medium Mn steel [J]. Mater. Sci. Eng., 2018, A726: 320
[102] Zhang Y J, Hui W J, Zhao X L, et al. Effect of reverted austenite fraction on hydrogen embrittlement of TRIP-aided medium Mn steel (0.1C-5Mn) [J]. Eng. Fail. Anal., 2019, 97: 605
[103] Zhang Y J, Hui W J, Wang J J, et al. Enhancing the resistance to hydrogen embrittlement of Al-containing medium-Mn steel through heavy warm rolling [J]. Scr. Mater., 2019, 165: 15
[104] Jeong I, Ryu K M, Lee D G, et al. Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel [J]. Scr. Mater., 2019, 169: 52
[105] Wang Z, Xu J P, Li J X. Influence of microstructure on hydrogen embrittlement in hot-rolled medium Mn steels [J]. Mater. Sci. Eng., 2020, A780: 139147
[106] Choi J Y, Hwang S W, Park K T. Twinning-induced plasticity aided high ductile duplex stainless steel [J]. Metall. Mater. Trans., 2013, 44A: 597
[107] Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel [J]. Scr. Mater., 2014, 92: 19
[108] Lee Y K, Choi C. Driving force for γε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system [J]. Metall. Mater. Trans., 2000, 31A: 355
[109] Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Trans., 1975, 6A: 791
[110] Aydin H, Jung I H, Essadiqi E, et al. Twinning and tripping in 10% Mn steels [J]. Mater. Sci. Eng., 2014, A591: 90
[111] Aydin H, Essadiqi E, Jung I H, et al. Development of 3rd generation AHSS with medium Mn content alloying compositions [J]. Mater. Sci. Eng., 2013, A564: 501
[1] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[2] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[3] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[4] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[5] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[6] 王丽娜, 杨平, 李凯, 崔凤娥, 毛卫民. 高锰TRIP钢冷轧以及α'-M逆转变过程的相变和织构演变[J]. 金属学报, 2018, 54(12): 1756-1766.
[7] 孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
[8] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[9] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[10] 孙朝阳,郭祥如,郭宁,杨竞,黄杰. 耦合孪生的TWIP钢多晶体塑性变形行为研究*[J]. 金属学报, 2015, 51(12): 1507-1515.
[11] 孙永伟,陈继志,刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究*[J]. 金属学报, 2015, 51(11): 1315-1324.
[12] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
[13] 闫二虎, 李新中, 唐平, 苏彦庆, 郭景杰, 傅恒志. Nb-Ti-Co氢分离合金近共晶点处的显微组织及其渗氢性能*[J]. 金属学报, 2014, 50(1): 71-78.
[14] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[15] 付波,杨王玥,李龙飞,孙祖庆. C含量对冷轧C-Mn-Al-Si,系TRIP钢组织及力学性能的影响[J]. 金属学报, 2013, 29(4): 408-414.