Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1335-1342    DOI: 10.11900/0412.1961.2020.00002
  本期目录 | 过刊浏览 |
15CrMoG钢包晶凝固特征与机制
李亚强1, 刘建华1(), 邓振强1, 仇圣桃2, 张佩3, 郑桂芸3
1 北京科技大学工程技术研究院 北京 100083
2 钢铁研究总院连铸技术国家工程研究中心 北京 100081
3 山东钢铁股份有限公司莱芜分公司 济南 271104
Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel
LI Yaqiang1, LIU Jianhua1(), DENG Zhenqiang1, QIU Shengtao2, ZHANG Pei3, ZHENG Guiyun3
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 National Engineering Research Center of Continuous Casting Technology, Central Iron and Steel Research Institute, Beijing 100081, China
3 Laiwu Branch of Shandong Iron and Steel Ltd. , Jinan 271104, China
引用本文:

李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
Yaqiang LI, Jianhua LIU, Zhenqiang DENG, Shengtao QIU, Pei ZHANG, Guiyun ZHENG. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. Acta Metall Sin, 2020, 56(10): 1335-1342.

全文: PDF(2256 KB)   HTML
摘要: 

采用超高温激光共聚焦扫描显微镜对15CrMoG钢包晶凝固过程进行了原位动态观察。发现冷却速率为5和15 ℃/min时,δ相以胞状方式析出;而当冷却速率增加至100 ℃/min时,δ相以枝晶方式析出。通过包晶相形核热力学分析表明,初始δ相凝固过程中L/δ界面处浓度梯度的存在增加包晶γ相Gibbs自由能成核势垒。随着冷却速率的增加,穿过L/δ界面浓度梯度变陡,导致包晶相γ形核所需过冷度增加,进而降低了包晶反应温度和提高了包晶反应速率。另外,冷却速率的增加导致包晶转变(δγ)模式发生改变,冷却速率为5 ℃/min时,δγ转化界面呈现溶质扩散控制的平面形态;冷却速率为15 ℃/min时,δγ转化界面呈现溶质扩散控制的胞状形态;而冷却速率为100 ℃/min时,出现界面过程控制的δγ块状转变。基于不同包晶转变δγ模式体积收缩的差异,讨论了亚包晶钢连铸调控机理。

关键词 15CrMoG钢冷却速率包晶反应包晶转变连铸    
Abstract

Cast defects of hypo-peritectic steel such as uneven growth of strand shell, crack formation and oscillation marks formation were found to occur frequently during continuous casting of steels. In industry, measures such as high-basicity casting powder, hot-top mold and reduction of mold cooling strength were usually used in the investigations, but a reasonable explanation for these measures has been lacking. In this work, solidification of 15CrMoG steel at different cooling rates were observed with an ultra high temperature confocal scanning laser microscope. The precipitation of the δ-phase was in a cellular manner when the cooling rates were 5 and 15 ℃/min, whereas it was in a dendrite manner when the cooling rate was increased to 100 ℃/min. Thermodynamic analysis of the peritectic phase nucleation showed that a concentration gradient existed at the L/δ interface during the solidication of initial δ phase which led to an increase in the Gibbs free energy barrier for the nucleation of the peritectic γ phase. As the cooling rate increased, the concentration gradient across the L/δ interface became steeper, resulting in an increase in the nucleation undercooling of the peritectic γ phase. This, in turn, decreased the temperature and increased the peritectic reaction rate. In addition, an increase in the cooling rate led to a change in the mode of peritectic transformation (δγ). A diffusion-controlled δγ transformation occurred due to the progression of planar and cellular interfaces at cooling rates of 5 and 15 ℃/min, respectively. However, a large δγ transformation, which was controlled by the interface process, occurred when the cooling rate was increased to 100 ℃/min. The difference in volume shrinkage of the different modes of peritectic transformation (δγ) led to a discussion of the control mechanism of continuous casting of hypo-peritectic steel.

Key words15CrMoG steel    cooling rate    peritectic reaction    peritectic transformation    continuous casting
收稿日期: 2020-01-02     
ZTFLH:  TF777  
基金资助:国家自然科学基金面上项目(51874028)
作者简介: 李亚强,男,1990年生,博士生
图1  实验温控制度示意图
图2  冷却速率为5 ℃/min 时δ相析出和包晶相变原位观察
图3  冷却速率为15 ℃/min时δ相析出和包晶相变原位观察
图4  冷却速率为100 ℃/min时δ相析出和包晶相变原位观察
图5  不同冷却速率条件下的包晶反应
图6  不同冷却速率条件下的包晶转变
图7  L/δ界面浓度分布示意图
图8  不同冷却速率条件下C浓度分布与Gibbs自由能
图9  冷却速率为5 ℃/min条件下L/δ和δ/γ界面迁移距离与时间平方根的关系
[1] Suzuki M, Yu C H, Sato H, et al. Origin of heat transfer anomaly and solidifying shell deformation of peritectic steels in continuous casting [J]. ISIJ Int., 1996, 36(suppl.): S171
[2] Jiang Z K, Su Z J, Xu C Q, et al. Abnormal mold level fluctuation during slab casting of peritectic steels [J]. J. Iron Steel Res. Int., 2020, 27: 160
doi: 10.1007/s42243-019-00299-7
[3] Saraswat R, Maijer D M, Lee P D, et al. The effect of mould flux properties on thermo-mechanical behaviour during billet continuous casting [J]. ISIJ Int., 2007, 47: 95
doi: 10.2355/isijinternational.47.95
[4] Xia G, Bernhard C, Ilie S, et al. A study about the influence of carbon content in the steel on the casting behavior [J]. Steel Res. Int., 2011, 82: 230
doi: 10.1002/srin.201000196
[5] Boettinger W J, Coriell S R, Greer A L, et al. Solidification microstructures: Recent developments, future directions [J]. Acta Mater., 2000, 48: 43
doi: 10.1016/S1359-6454(99)00287-6
[6] Shibata H, Arai Y, Suzuki M, et al. Kinetics of peritectic reaction and transformation in Fe-C alloys [J]. Metall. Mater. Trans., 2000, 31B: 981
[7] Griesser S, Bernhard C, Dippenaar R. Mechanism of the peritectic phase transition in Fe-C and Fe-Ni alloys under conditions close to chemical and thermal equilibrium [J]. ISIJ Int., 2014, 54: 466
doi: 10.2355/isijinternational.54.466
[8] Chuang Y K, Reinisch D, Schwerdtfeger K. Kinetics of the diffusion controlled peritectic reaction during solidification of iron-carbon-alloys [J]. Metall. Mater. Trans., 1975, 6A: 235
[9] Fredriksson H, Stjerndahl J. Solidification of iron-base alloys [J]. Met. Sci., 1982, 16: 575
[10] Gao Z, Zhang X Z, Yao S F. Mechanism of crack formation during continuous casting of peritectic steel slabs [J]. J. Iron Steel Res., 2009, 21(10): 8
[10] (高 仲, 张兴中, 姚书芳. 包晶钢铸坯裂纹形成机理的实验研究 [J]. 钢铁研究学报, 2009, 21(10): 8)
[11] de Andrés C G, Caballero F G, Capdevila C, et al. Application of dilatometric analysis to the study of solid-solid phase transformations in steels [J]. Mater. Charact., 2002, 48: 101
doi: 10.1016/S1044-5803(02)00259-0
[12] Guo J L, Wen G H, Pu D Z, et al. A novel approach for evaluating the contraction of hypo-peritectic steels during initial solidification by surface roughness [J]. Materials, 2018, 11: 571
doi: 10.3390/ma11040571
[13] Guo L J, Wen G H, Fu J J, et al. Influence of cooling rate on the contraction of peritectic transformation during solidification of peritectic steels [J]. Acta Metall. Sin., 2019, 55: 1311
doi: 10.11900/0412.1961.2018.00553
[13] (郭军力, 文光华, 符姣姣等. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响 [J]. 金属学报, 2019, 55: 1311)
doi: 10.11900/0412.1961.2018.00553
[14] Pu D Z, Wen G H, Fu D C, et al. Study of the effect of carbon on the contraction of hypo-peritectic steels during initial solidification by surface roughness [J]. Metals, 2018, 8: 982
doi: 10.3390/met8120982
[15] Saleem S, Vynnycky M, Fredriksson H. The influence of peritectic reaction/transformation on crack susceptibility in the continuous casting of steels [J]. Metall. Mater. Trans., 2017, 48B: 1625
[16] Phelan D, Reid M, Dippenaar R. Kinetics of the peritectic phase transformation: In-situ measurements and phase field modeling [J]. Metall. Mater. Trans., 2006, 37A: 985
[17] Matsuura K, Itoh Y, Narita T. A solid-liquid diffusion couple study of a peritectic reaction in iron-carbon system [J]. ISIJ Int., 1993, 33: 583
doi: 10.2355/isijinternational.33.583
[18] Griesser S, Reid M, Bernhard C, et al. Diffusional constrained crystal nucleation during peritectic phase transitions [J]. Acta Mater., 2014, 67: 335
doi: 10.1016/j.actamat.2013.12.018
[19] Griesser S, Bernhard C, Dippenaar R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel [J]. Acta Mater., 2014, 81: 111
doi: 10.1016/j.actamat.2014.08.020
[20] Demirel Y. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems [M]. 2nd Ed., Amsterdam: Elsevier, 2007: 97
[21] Müller I. A History of Thermodynamics: The Doctrine of Energy and Entropy [M]. Berlin: Springer, 2007: 330
[22] Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification [J]. Metall. Trans., 1986, 17B: 845
[23] Mittemeijer E J. Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems [M]. Berlin Heidelberg: Springer-Verlag, 2011: 139
[24] Jacot A, Sumida M, Kurz W. Solute trapping-free massive transformation at absolute stability [J]. Acta Mater., 2011, 59: 1716
doi: 10.1016/j.actamat.2010.11.038
[25] Liu Z C, Ren H P, Song Y Q, et al. Tutorial of Solid Metal Phase Transition [M]. Beijing: Metallurgical Industry Press, 2003: 181
[25] (刘宗昌, 任慧平, 宋义全等. 金属固态相变教程 [M]. 北京: 冶金工业出版社, 2003: 181)
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[4] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[5] 郭东伟, 郭坤辉, 张福利, 张飞, 曹江海, 侯自兵. 基于二次枝晶间距变化特征的连铸方坯CET位置判断新方法[J]. 金属学报, 2022, 58(6): 827-836.
[6] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[7] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[8] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[9] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[10] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[11] 任忠鸣,雷作胜,李传军,玄伟东,钟云波,李喜. 电磁冶金技术研究新进展[J]. 金属学报, 2020, 56(4): 583-600.
[12] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[13] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[14] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[15] 侯自兵, 徐瑞, 常毅, 曹江海, 文光华, 唐萍. 高碳钢连铸方坯拉坯方向偏析C元素分布的时间序列波动特征[J]. 金属学报, 2018, 54(6): 851-858.