Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1495-1506    DOI: 10.11900/0412.1961.2020.00039
  本期目录 | 过刊浏览 |
7055铝合金的非等温双级时效行为
李吉臣1, 冯迪1,2(), 夏卫生2, 郭为民3(), 王国迎1
1 江苏科技大学材料科学与工程学院 镇江 212003
2 华中科技大学材料科学与工程学院 武汉 430074
3 洛阳船舶材料研究所海洋腐蚀与防护重点实验室 青岛 266237
The Non-Isothermal Double Ageing Behaviour of 7055 Aluminum Alloy
LI Jichen1, FENG Di1,2(), XIA Weisheng2, GUO Weimin3(), WANG Guoying1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

李吉臣, 冯迪, 夏卫生, 郭为民, 王国迎. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506.
Jichen LI, Di FENG, Weisheng XIA, Weimin GUO, Guoying WANG. The Non-Isothermal Double Ageing Behaviour of 7055 Aluminum Alloy[J]. Acta Metall Sin, 2020, 56(11): 1495-1506.

全文: PDF(5775 KB)   HTML
摘要: 

采用硬度测试、电导率测试、室温拉伸实验、剥落腐蚀实验、DSC分析以及TEM观察,研究了非等温双级时效对7055铝合金组织及性能的影响。结果表明:在第二级时效的连续升温阶段,晶内由GP区、η′和α-Al三相共存状态逐渐演变为η′、ηα-Al三相共存态。在第二级时效的连续降温阶段,晶内二次析出GP区和η′相,合金硬度再次升高。晶界η相在时效过程中不断粗化并呈断续分布,合金电导率持续增加。非等温双级时效的第二级升温速率和最高时效温度(Tp)决定了合金的性能。在相同性能水平下,快速升温对应相对更高的Tp。以电导率22 MS/m为标准,1 ℃/min升温速率对应的Tp为215 ℃,而3 ℃/min升温速率下Tp则为225 ℃。经过105 ℃、24 h预时效并包含升降温的非等温二级时效,7055铝合金的抗拉强度和剥落腐蚀等级可达610 MPa和EB级别,表现出比T6和T73态更加优异的综合性能,且取消等温保温阶段实现了热处理工艺的短流程操作。

关键词 7055铝合金非等温时效强度剥落腐蚀    
Abstract

Thick plates of 7055 aluminum alloy are widely used as structural components, especially in the aerospace industry, due to their high strength, low density, excellent hot workability, and high stress-corrosion resistance, which are dependent on the type of thermal treatment the alloy is subjected to. Because of the heating and cooling stages in such components, non-isothermal ageing has attracted a lot of research interests. Replacing isothermal ageing with non-isothermal ageing is needed for higher efficiency and practicability. Herein, a novel isothermal-ageing technique based on double ageing is developed. Hardness test, electrical conductivity test, room-temperature tensile test, exfoliation corrosion test, DSC, and TEM analyses were employed to study the influence of non-isothermal double ageing on microstructure and properties of the 7055 aluminum alloy. The results showed that in the heating stage of the second ageing treatment, inner grains of the microstructure evolved from a three-phase coexistence state containing the GP zone, η′ phase, and α-Al to that containing η′ phase, η phase, and α-Al. On the other hand, in the continuous cooling stage of the second ageing, GP zone and η′ phase re-precipitated, resulting in improved hardness. The η phase on the grain boundary became coarse and discontinuously distributed, which resulted in a progressive improvement of the electrical conductivity. The heating rate and highest ageing temperature (Tp) of the second ageing stage determined the final properties. With a standard electrical conductivity of 22 MS/m, 1 ℃/min heating rate corresponds to the Tp of 215 ℃, while Tp of 225 ℃ is needed when heating by 3 ℃/min. After pre-aged by 105 ℃, 24 h and non-isothermal ageing including heating and cooling stages, the strength and exfoliation corrosion resistance of approximately 610 MPa and EB level were achieved, respectively. The alloy showed a better comprehensive performance than the T6 and T73 state ones. Additionally, the non-isothermal ageing removing the heat preservation stage realized the short process preparation.

Key words7055 aluminum alloy    non-isothermal ageing    strength    exfoliation corrosion
收稿日期: 2020-02-10     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51801082);海洋腐蚀与防护重点实验室开放研究基金项目(KF190409)
作者简介: 李吉臣,男,1997年生,硕士生
图1  7055铝合金非等温时效工艺示意图
图2  1和3 ℃/min加热速率下7055铝合金升温时效和随后炉冷时效(部分温度点)过程的电导率演变曲线
图3  1和3 ℃/min加热速率下7055铝合金升温时效和随后炉冷时效(部分温度点)过程的硬度演变曲线
Ageing stateRm / MPaRp0.2 / MPaA / %Electrical conductivity / (MS·m-1)
1/215/L607.7580.611.422.1
3/225/L610.0578.812.722.2
RRA617.5585.812.122.1
T73557.0513.011.723.1
T6651.6583.310.816.6
表1  不同时效状态下7055铝合金的性能
图4  不同时效状态试样的剥落腐蚀形貌
图5  不同时效状态试样晶内析出相的TEM像及选区电子衍射(SAED)谱Color online
图6  不同时效状态下晶界的TEM 像
图7  第一级时效以及升温时效过程中沉淀相的TEM像及其SAED谱 (3 ℃/min)
图8  不同升温时间点试样的DSC曲线(升温速率为3 ℃/min)
图9  不同降温时间点试样的DSC曲线(Tp=225 ℃)
[1] Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
[2] Li S, Dong H G, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy [J]. Corros. Sci., 2018, 131: 278
[3] Lin Y C, Zhang J L, Chen M S. Evolution of precipitates during two-stage stress-aging of an Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 684: 177
[4] Jiang J T, Tang Q J, Yang L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties [J]. J. Mater. Process. Technol., 2016, 227: 110
[5] Sun Y S, Jiang F L, Zhang H, et al. Residual stress relief in Al-Zn-Mg-Cu alloy by a new multistage interrupted artificial aging treatment [J]. Mater. Des., 2016, 92: 281
[6] Moghanaki S K, Kazeminezhad M. Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed 2024 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1
[7] Hayoune A, Hamana D. Structural evolution during non-isothermal ageing of a dilute Al-Cu alloy by dilatometric analysis [J]. J. Alloys Compd., 2009, 474: 118
[8] Yazdanmehr M, Bahrami A, Anijdan S H M. A precipitation-hardening model for non-isothermal ageing of Al-Mg-Si alloys [J]. Comput. Mater. Sci., 2009, 45: 385
[9] Guo M X, Zhang Y, Zhang X K, et al. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents [J]. Mater. Sci. Eng., 2016, A669: 20
[10] Zhang X. Study on the microstructure evolution of 7050 aluminum alloy during non-isothermal aging process [D]. Harbin: Harbin Institute of Technology, 2012
[10] (张 雪. 7050铝合金非等温时效过程组织演变研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[11] Lin Y, Jiang D M, Li B Q, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy [J]. Mater. Des., 2014, 60: 116
[12] Tang Q J. Study on cooling ageing process of 7A85 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2010
[12] (唐秋菊. 7A85铝合金降温时效工艺的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010)
[13] Jiang D M, Liu Y, Liang S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 681: 57
[14] Liu Y, Jiang D M, Li B Q, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy [J]. Mater. Des., 2014, 57: 79
[15] Koziel J, Blaz L, Wloch G, et al. Precipitation processes during non-isothermal aging of fine-grained AA2219 [J]. J. Alloys Compd., 2016, 682: 468
[16] Liu Y, Liang S, Jiang D M. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy [J]. J. Alloys Compd., 2016, 689: 632
[17] Li J C, Feng D, Xia W S, et al. Effect of non-isothermal aging on microstructure and properties of 7B50 aluminum alloy [J]. Acta Metall. Sin., 2020, 46: 1255
[17] (李吉臣, 冯 迪, 夏卫生等. 非等温时效对7B50铝合金组织及性能的影响 [J]. 金属学报, 2020, 46: 1255)
[18] Feng D, Zhang X M, Chen H M, et al. Effect of non-isothermal retrogression and re-ageing on microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate [J]. Acta Metall. Sin., 2018, 54: 100
[18] (冯 迪, 张新明, 陈洪美等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响 [J]. 金属学报, 2018, 54: 100)
[19] Engdahl T, Hansen V, Warren P J, et al. Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments [J]. Mater. Sci. Eng., 2002, A327: 59
[20] Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050) [J]. Acta Mater., 2004, 52: 4503
[21] Li L, Wei L J, Xu Y J, et al. Study on the optimizing mechanisms of superior comprehensive properties of a hot spray formed Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2019, A742: 102
[22] Berg L K, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J]. Acta Mater., 2001, 49: 3443
[23] Mazzer E M, Afonso C R M, Galano M, et al. Microstructure evolution and mechanical properties of Al-Zn-Mg-Cu alloy reprocessed by spray-forming and heat treated at peak aged condition [J]. J. Alloys Compd., 2013, 579: 169
[24] Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy [J]. J. Alloys Compd., 2018, 735: 261
[25] Ozer G, Karaaslan A. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2357
[26] Ranganatha R, Kumar V A, Nandi V S, et al. Multi-stage heat treatment of aluminum alloy AA7049 [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1570
[27] Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
[28] Viana F, Pinto A M P, Santos H M C, et al. Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization [J]. J. Mater. Process. Technol., 1999, 92-93: 54
[29] Chen J Z. Ageing precipitation behavior and mechanical properties of AA 7055 aluminum alloy [D]. Harbin: Harbin Institute of Technology, 2008
[29] (陈军洲. AA 7055铝合金的时效析出行为与力学性能 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[30] Nicolas M, Deschamps A. Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments [J]. Acta Mater., 2003, 51: 6077
doi: 10.1016/S1359-6454(03)00429-4
[31] Liu D M, Xiong B Q, Bian F G, et al. In situ studies of microstructure evolution and properties of an Al-7.5Zn-1.7Mg-1.4Cu-0.12Zr alloy during retrogression and reaging [J]. Mater. Des., 2014, 56: 1020
doi: 10.1016/j.matdes.2013.12.006
[32] Liu D M, Xiong B Q, Bian F G, et al. Quantitative study of precipitates in an Al-Zn-Mg-Cu alloy aged with various typical tempers [J]. Mater. Sci. Eng., 2013, A588: 1
[33] Nandana M S, Bhat K U, Manjunatha C M. Influence of retrogression and re-ageing heat treatment on the fatigue crack growth behavior of 7010 aluminum alloy [J]. Procedia Struct. Integr., 2019, 14: 314
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 沈国慧, 胡斌, 杨占兵, 罗海文. 回火温度对含 δ 铁素体高铝中锰钢力学性能和显微组织的影响[J]. 金属学报, 2022, 58(2): 165-174.
[6] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[7] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[8] 侯嘉鹏, 孙朋飞, 王强, 张振军, 张哲峰. 突破强度-导电率制约关系:晶粒异构设计[J]. 金属学报, 2022, 58(11): 1467-1477.
[9] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[10] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[11] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[12] 李文文, 陈波, 熊华平, 尚泳来, 毛唯, 程耀永. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能[J]. 金属学报, 2021, 57(8): 959-966.
[13] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[14] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[15] 王慧远, 夏楠, 布如宇, 王珵, 查敏, 杨治政. 低合金化高性能变形镁合金研究现状及展望[J]. 金属学报, 2021, 57(11): 1429-1437.