Please wait a minute...
金属学报  2021, Vol. 57 Issue (3): 353-362    DOI: 10.11900/0412.1961.2020.00328
  研究论文 本期目录 | 过刊浏览 |
AA 7055铝合金时效析出强化模型
陈军洲1,2(), 吕良星3, 甄良3, 戴圣龙1,2
1.中国航发北京航空材料研究院 北京 100095
2.北京市先进铝合金材料及应用工程技术研究中心 北京 100095
3.哈尔滨工业大学 材料科学与工程学院 哈尔滨 150001
Precipitation Strengthening Model of AA 7055 Aluminium Alloy
CHEN Junzhou1,2(), LV Liangxing3, ZHEN Liang3, DAI Shenglong1,2
1.AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
3.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. Acta Metall Sin, 2021, 57(3): 353-362.

全文: PDF(2077 KB)   HTML
摘要: 

利用小角度X射线散射技术获得的系列定量信息,综合运用时效析出动力学理论和析出相切过、绕过强化机制,研究了AA 7055铝合金在120和160℃时效过程中的屈服强度演变模型。结果表明,在时效早期盘状析出相的盘面半径和半厚度均与t1/2 (t为时效时间)成线性关系;在时效后期,析出相尺寸则与t1/3成线性关系。时效过程中析出相体积分数与t的变化关系遵循JMA (Johnson-Mehl-Avrami)型表达式。综合考虑了GPI区和η'相2类析出相对合金强度的贡献,并且分别考察了这2类析出相的模量强化机制和共格应变强化机制,最终建立了AA 7055铝合金在120和160℃时效过程中的屈服强度变化模型,确定了该合金时效过程中析出相与屈服强度之间的定量关系。

关键词 AA 7055铝合金时效析出强化模型    
Abstract

AA 7055 aluminium alloy has been widely applied in aviation and aerospace applications, especially after T7751 heat treatment, owing to its excellent properties, such as high strength and good stress corrosion and fatigue resistances. For 7XXX aluminium alloys, aging hardening is the main strengthening mechanism, and the hardening effect is determined by the microstructural features of precipitates including morphology, composition, volume fraction, nucleation density, and size distribution. To further improve the property of alloy and expand the breadth of applications, establishing a precise predictive model regarding strength performance associated with the precipitates is necessary. In this work, based on the quantitative results of the precipitates obtained using small angle X-ray scattering techniques, the strengthening models of AA 7055 Al alloys aged at 120 and 160oC were investigated. Precipitation kinetics show that at the early stages of aging, the evolution of radius and the half thickness of plate-like precipitates are both linear with t1/2 (t means the aging time). Conversely, at the later stages of aging, they are linear with t1/3. The evolution of the volume fraction of the precipitates follows a JMA (Johnson-Mehl-Avrami)-type equation. Strength contributions from both GPI zones and η' precipitates are considered. Moreover, strengthening modeling considered both the modulus and coherency strain strengthening mechanisms of these two kinds of precipitates that had been built for the AA 7055 Al alloy aged at 120 and 160oC. Therefore, yield strength during aging can be predicted.

Key wordsAA 7055 aluminium alloy    aging precipitation    strengthening model
收稿日期: 2020-08-26     
ZTFLH:  TG146.2  
作者简介: 陈军洲,男,1980年生,高级工程师,博士
图1  拉伸试样示意图
图2  AA 7055铝合金时效析出相半径和半厚度的平方(r2和h2)随时效时间(t)的变化(a) 160oC (b) 120oC
图3  AA 7055铝合金时效析出相r3和h3随t的变化(a) 160oC (b) 120oC
图4  AA 7055铝合金析出相体积分数(fp)随t的变化(a) 160oC (b) 120oC
图5  AA 7055铝合金160℃过时效阶段屈服强度测量值与预测值(式(40))的比较
图6  AA 7055铝合金160℃时效不同时间GPI区体积分数(fGPI)的变化
图7  AA 7055铝合金160℃欠时效阶段各强化效应提供的屈服强度增量
图8  AA 7055铝合金160℃欠时效阶段实验屈服强度与预测强度(式(42))的比较
图9  AA 7055铝合金160℃整个时效阶段屈服强度预测值(式(43))与实验值的比较
图10  AA 7055铝合金120℃过时效模型屈服强度预测值(式(40))与实验值的比较
ParameterValueData source
Taylor factor M3.06Present model
Coherency strain for η'εη'0.0133Present model
Coherency strain for GPI εGPI0.0025Present model
Constant depends on the precipitation κ3.2Present model
Maximum volume fraction of whole precipitation fmax0.1035Ref.[13]
Maximum volume fraction of the GPI zone fmax,?GPI0.025Present model
Shear modulus G27 GPaRef.[25]
Shear modulus between the η' and matrix ΔEη'0.7 GPaRef.[26]
Shear modulus between the GPI zones and matrix ΔEGPI1.5 GPaPresent model
Inherent strength of Al σi15.7 MPaRef.[27]
Grain boundary strengthening value ΔσGB22 MPaPresent model
Constant depends on the solute atoms C3237.5 MPaPresent model
Magnitude of the Burgers vector b0.286 nmRef.[25]
表1  AA 7055铝合金120℃欠时效强化模型中用到的一些参数
图11  AA 7055铝合金120℃时效过程中fGPI的变化
图12  AA 7055铝合金120℃时效各强化效应提供的屈服强度增量
图13  AA 7055铝合金120℃欠时效模型屈服强度预测值(式(46))与实验值的比较
1 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
2 Deschamps A, Livet F, Bréchet Y. Influence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties [J]. Acta Mater., 1998, 47: 281
3 Liu J. Advanced aluminium and hybrid aerostructures for future aircraft [J]. Mater. Sci. Forum, 2006, 519-521: 1233
4 Cong F G, Zhao G, Tian N, et al. Research progress and development trend of strengthening-toughening of ultra-high strength 7XXX aluminum alloy [J]. Light Alloy Fabr. Technol., 2012, 40(10): 23
4 丛福官, 赵 刚, 田 妮等. 7XXX系超高强铝合金的强韧化研究进展及发展趋势 [J]. 轻合金加工技术, 2012, 40(10): 23
5 Du Z W, Sun Z M, Shao B L, et al. Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging [J]. Mater. Charact., 2006, 56: 121
6 Deschamps A, Bréchet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modeling of precipitation kinetics and yield stress [J]. Acta Mater., 1998, 47: 293
7 Starink M J, Wang P, Sinclair I, et al. Microstructure and strengthening of Al-Li-Cu-Mg alloys and MMCS: II. Modelling of yield strength [J]. Acta Mater., 1999, 47: 3855
8 Starink M J, Wang S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2003, 51: 5131
9 Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2003, A344: 113
10 Chen J Z, Lv L X, Zhen L, et al. Quantitative characterization on the precipitation of AA 7055 Aluminum Alloy by SAXS [J]. Acta. Metall. Sin., 2017, 53: 897
10 陈军洲, 吕良星, 甄 良等. AA 7055铝合金时效析出过程的小角度X射线散射定量表征 [J]. 金属学报, 2017, 53: 897
11 Liu G. Modeling and experimental investigation into the mechanical properties of aged aluminum alloys containing multi-scaled second phase particles [D]. Xi'an: Xi'an Jiao Tong University, 2002
11 刘 刚. 含多尺度第二相时效铝合金力学性能的模型化与实验研究 [D]. 西安: 西安交通大学, 2002
12 Russell K C. Nucleation in solids: The induction and steady state effects [J]. Adv. Colloid Interface Sci., 1980, 13: 205
13 Werenskiold J C, Deschamps A, Bréchet Y. Characterization and modeling of precipitation kinetics in an Al-Zn-Mg alloy [J]. Mater. Sci. Eng., 2000, A293: 267
14 Horvay G, Cahn J W. Dendritic and spheroidal growth [J]. Acta Metall., 1961, 9: 695
15 Ferrante M, Doherty R D. Influence of interfacial properties on the kinetics of precipitation and precipitate coarsening in aluminium-silver alloys [J]. Acta Metall., 1979, 27: 1603
16 Davies C K L, Nash P, Stevens R N. The effect of volume fraction of precipitate on Ostwald ripening [J]. Acta Metall., 1980, 28: 179
17 Feng D. Physics of Metals. Volume II Phase Transition [M]. Beijing: Science Press, 1990: 150
17 冯 端. 金属物理学. 第二卷 相变 [M]. 北京: 科学出版社, 1990: 150
18 Shercliff H R, Ashby M F. A process model for age hardening of aluminium alloys-I. The model [J]. Acta Metall. Mater., 1990, 38: 1789
19 Du Z W. Precipitation and strengthening of 7000 serials and their Li containing aluminum alloys [D]. Beijing: Beihang University, 2005
19 杜志伟. Al-Zn-Mg-Cu及其含Li合金沉淀析出过程显微结构演化的研究 [D]. 北京: 北京航空航天大学, 2005
20 Berg L K, Gjønnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J]. Acta Mater., 2001, 49: 3443
21 Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050) [J]. Acta Mater., 2004, 52: 4503
22 Yang D Z. Dislocations and Strengthening Mechanisms of Metals [M]. Harbin: Harbin Institute of Technology Press, 1991: 178
22 杨德庄. 位错与金属强化机制 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1991: 178
23 Zhu A W, Starke Jr E A. Strengthening effect of unshearable particles of finite size: A computer experimental study [J]. Acta Mater., 1999, 47: 3263
24 Chen J Z, Zhen L, Yang S J, et al. Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy [J]. Mater. Sci. Eng., 2009, A500: 34
25 Song M. Modeling the hardness and yield strength evolutions of aluminum alloy with rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2007, A443: 172
26 Seidenkranz T, Hegenbarth E. Single-crystal elastic constants of MgZn2 in the temperature range from 4.2 to 300 K [J]. Phys. Stat. Sol., 1976, 33A: 205
27 Spriano S, Doglione R, TextureBaricco M., hardening and mechanical anisotropy in AA8090-T851 plate [J]. Mater. Sci. Eng., 1998, A257: 134
[1] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[2] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[3] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[4] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[5] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.
[6] 杨文超 汪明朴 盛晓菲 张茜 王正安. 轨道交通车辆用6005A合金板材时效析出及硬化行为研究[J]. 金属学报, 2010, 46(12): 1481-1487.
[7] 陈康华; 李侠; 宋旼; 黄大为 . SiCp/Al合金复合材料时效强化的综合模型[J]. 金属学报, 2006, 42(8): 887-891 .
[8] 闵娜; 李伟; 金学军; 王晓东; 杨涛; 张驰 . 时效对冷拔珠光体钢力学性能的影响[J]. 金属学报, 2006, 42(10): 1009-1013 .