Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1507-1520    DOI: 10.11900/0412.1961.2020.00031
  本期目录 | 过刊浏览 |
(TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为
宋芊汀1,2, 徐映坤1, 徐坚1()
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Dry-Sliding Wear Behavior of (TiZrNbTa)90Mo10 High-Entropy Alloy Against Al2O3
SONG Qianting1,2, XU Yingkun1, XU Jian1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
Qianting SONG, Yingkun XU, Jian XU. Dry-Sliding Wear Behavior of (TiZrNbTa)90Mo10 High-Entropy Alloy Against Al2O3[J]. Acta Metall Sin, 2020, 56(11): 1507-1520.

全文: PDF(4795 KB)   HTML
摘要: 

采用“球-板”式往复滑动方式,研究了电弧熔炼态bcc结构 (TiZrNbTa)90Mo10高熵合金与Al2O3球在干摩擦条件下的摩擦磨损行为,并与Ti6Al4V和Co28Cr6Mo 2种合金进行了对比。通过对磨痕、磨屑、磨球表面形貌的表征,揭示出该高熵合金在摩擦学和磨损机制上的特征。结果表明,(TiZrNbTa)90Mo10高熵合金与Al2O3干滑动摩擦的摩擦系数(f)为0.8~0.9,约是同条件下Ti6Al4V和Co28Cr6Mo合金与Al2O3摩擦体系的2倍。(TiZrNbTa)90Mo10高熵合金的比磨损率约是Ti6Al4V合金的2.3倍,是Co28Cr6Mo合金的90倍,即耐磨性不如后2种合金;其磨损机制因施加载荷的大小而异,低载荷下以磨粒磨损为主,高载荷下三体磨粒磨损的作用愈显突出,在磨损机制上明显不同于Ti6Al4V和Co28Cr6Mo。该高熵合金在高强度和高硬度上的优势并未保证其拥有良好的耐磨性,与之相适宜的低摩擦磨损对磨副材料仍有待于进一步研究。

关键词 高熵合金Al2O3摩擦学磨损生物医用金属    
Abstract

Degenerative and inflammatory joint disease including osteoarthritis, rheumatoid arthritis and chondromalacia affect more and more people. The standard treatment nowadays is arthroplasty, such as total hip replacement (THR). The material selection for the combination of bearing surfaces is a critical issue to determine the life quality of patients with THR. High entropy alloy (HEA) is expected to be a candidate material owing to its appreciated mechanical properties. A new HEA, (TiZrNbTa)90Mo10 alloy was developed recently, but its tribological behavior is still unclear. Using ball-on-plate reciprocating sliding approach, dry sliding wear behavior of arc-melted (TiZrNbTa)90Mo10 HEA against Al2O3 was investigated, together with two conventional implant alloys, Ti6Al4V and Co28Cr6Mo, for comparison. The wear mechanism of these alloys was revealed by characterizing the morphology of worn track, wear debris and scar on counterpart ball. It was shown that, under dry sliding condition, the coefficient of friction (f) of the HEA was determined to be 0.8~0.9, which is nearly double of that of either Ti6Al4V or Co28Cr6Mo, and is insensitive to the applied loading. Meanwhile, specific wear rate of this HEA is approximately 2.3 and 90 times of that of Ti6Al4V and Co28Cr6Mo, respectively, which means that wear resistance of the former is inferior to the two latter under the current conditions. As indicated, wear mechanism of the HEA is dependent on the applied loading. The abrasive wear is predominant under lower-level loading, whereas the third-body abrasive wear took place and played a remarkable role as the loading increased. It is noteworthy that such a complex mechanism is considerably different from that of either Ti6Al4V or Co28Cr6Mo. Furthermore, it is of interest to note that the advantage in mechanical properties of the current HEA, such as high strength and high hardness, is not necessarily to offer its excellent wear resistance, at least under the current tribological condition. It is proposed as future work to screen the appreciate materials as counterpart for this HEA and to characterize its wear behavior under a condition containing lubricant medium such as physiological fluid.

Key wordshigh-entropy alloy    Al2O3    tribology    wear    biomedical metal
收稿日期: 2020-01-20     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(51571192)
作者简介: 宋芊汀,男,1992年生,博士生
图1  在不同干摩擦载荷条件下,TiZrNbTaMo-HEA、Ti6Al4V、Co28Cr6Mo 3种合金与Al2O3对磨的摩擦系数(f)随时间变化曲线
图2  干摩擦条件下TiZrNbTaMo-HEA、Ti6Al4V、Co28Cr6Mo合金与Al2O3球对磨的f与载荷之间的关系
图3  在干摩擦条件下,TiZrNbTaMo-HEA、Ti6Al4V、Co28Cr6Mo 3种合金与Al2O3球往复式对磨3600 s后体积损失与载荷之间的关系
图4  在不同干摩擦载荷下,TiZrNbTaMo-HEA与Al2O3球往复式对磨3600 s后试样表面磨痕的三维激光测量显微镜照片
图5  在不同干摩擦载荷下,TiZrNbTaMo-HEA、Ti6Al4V、Co28Cr6Mo合金与Al2O3球往复式对磨3600 s后,试样表面磨痕中心区域横截面沿纵深方向的二维轮廓线
图6  在干摩擦条件下,TiZrNbTaMo-HEA、Ti6Al4V、Co28Cr6Mo合金与Al2O3球往复式对磨3600 s后,表面磨痕的宽度和深度随载荷的变化
图7  在2、10、20 N载荷下,TiZrNbTaMo-HEA与Al2O3球对磨3600 s后,试样表面磨痕区域的SEM像
图8  在10 N干摩擦载荷条件下Ti6Al4V和Co28Cr6Mo合金与Al2O3球对磨3600 s后的SEM像
图9  在不同载荷下与Al2O3球对磨后,由TiZrNbTaMo-HEA表面磨屑的SEM像
图10  在2、10和20 N载荷下,与TiZrNbTaMo-HEA对磨后,Al2O3球表面磨损区域的SEM像
图11  在干摩擦条件下与TiZrNbTaMo-HEA和Ti6Al4V合金对磨后,Al2O3对磨球的体积损失与载荷之间的关系及与合金体积损失之间的关系
图12  在干摩擦条件下与Al2O3球往复式对磨3600 s后,TiZrNbTaMo-HEA、Ti6Al4V、Co28Cr6Mo合金的比磨损率和Vickers硬度比较
Material2 N5 N10 N20 N
TiZrNbTaMo-HEA5777829861240
Ti6Al4V5267148991130
Co28Cr6Mo72197812301550
表1  根据式(3)计算得出不同对磨副在不同载荷下的最大接触应力 (MPa)
[1] Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
pmid: 9839998
[2] Karachalios T, Karydakis G. European Instructional Lectures [M]. Berlin, Heidelberg: Springer, 2011: 133
[3] Muñoz A I, Mischler S. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys [J]. J. Mater. Sci. Mater. Med., 2011, 22: 437
[4] Goodman S B, Gómez Barrena E, Takagi M, et al. Biocompatibility of total joint replacements: A review [J]. J. Biomed. Mater. Res., 2009, 90A: 603
[5] Golish S R, Anderson P A. Bearing surfaces for total disc arthroplasty: Metal-on-metal versus metal-on-polyethylene and other biomaterials [J]. Spine J., 2012, 12: 693
pmid: 21700505
[6] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
[7] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
[8] Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
[9] Todai M, Nagase T, Hori T, et al. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials [J]. Scr. Mater., 2017, 129: 65
[10] Wang S P, Xu J. (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening [J]. Intermetallics, 2018, 95: 59
[11] Song Q T, Xu J. (TiZrNbTa)90Mo10 high-entropy alloy: Electrochemical behavior and passive film characterization under exposure to Ringer's solution [J]. Corros. Sci., 2020, 167: 108513
[12] Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content [J]. Wear, 2006, 261: 513
[13] Ayyagari A, Barthelemy C, Gwalani B, et al. Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments [J]. Mater. Chem. Phys., 2018, 210: 162
[14] Hsu C Y, Sheu T S, Yeh J W, et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys [J]. Wear, 2010, 268: 653
[15] Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures [J]. Wear, 2019, 428-429: 32
[16] Ye Y X, Liu C Z, Wang H, et al. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique [J]. Acta Mater., 2018, 147: 78
[17] Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 126
[18] Wang Y, Shi L L, Duan D L, et al. Tribological properties of Zr61Ti2Cu25Al12 bulk metallic glass under simulated physiological conditions [J]. Mater. Sci. Eng., 2014, C37: 292
[19] Straffelini G, Molinari A. Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions [J]. Wear, 1999, 236: 328
[20] Ureña J, Tabares E, Tsipas S, et al. Dry sliding wear behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2019, 91: 335
[21] Branco A C, Moreira V, Reis J A, et al. Influence of contact configuration and lubricating conditions on the microtriboactivity of the zirconia-Ti6Al4V pair used in dental applications [J]. J. Mech. Behav. Biomed. Mater., 2019, 91: 164
[22] Wang S P, Ma E, Xu J. Notch fracture toughness of body-centered-cubic (TiZrNbTa)-Mo high-entropy alloys [J]. Intermetallics, 2018, 103: 78
doi: 10.1016/j.intermet.2018.10.008
[23] Qu J, Blau P J, Watkins T R, et al. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces [J]. Wear, 2005, 258: 1348
[24] Xiang D D, Song J, Wang S, et al. Study on tribological properties of CoCrMo alloys against metals and ceramics as bearing materials for artificial cervical disc [J]. J. Mater. Eng. Perform., 2018, 27: 517
[25] Dong H, Bell T. Tribological behaviour of alumina sliding against Ti6Al4V in unlubricated contact [J]. Wear, 1999, 225: 874
[26] Farokhzadeh K, Edrisy A. Transition between mild and severe wear in titanium alloys [J]. Tribol. Int., 2016, 94: 98
doi: 10.1016/j.triboint.2015.08.020
[27] Li X X, Zhou Y, Ji X L, et al. Effects of sliding velocity on tribo-oxides and wear behavior of Ti-6Al-4V alloy [J]. Tribol. Int., 2015, 91: 228
doi: 10.1016/j.triboint.2015.02.009
[28] Doni Z, Alves A C, Toptan F, et al. Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys [J]. Mater. Des., 2013, 52: 47
doi: 10.1016/j.matdes.2013.05.032
[29] Molinari A, Straffelini G, Tesi B, et al. Dry sliding wear mechanisms of the Ti6Al4V alloy [J]. Wear, 1997, 208: 105
doi: 10.1016/S0043-1648(96)07454-6
[30] Wang X T, Padture N P, Tanaka H, et al. Wear-resistant ultra-fine-grained ceramics [J]. Acta Mater., 2005, 53: 271
doi: 10.1016/j.actamat.2004.09.020
[31] Archard J F. Contact and rubbing of flat surfaces [J]. J. Appl. Phys., 1953, 24: 981
doi: 10.1063/1.1721448
[32] Rabinowicz E, Mutis A. Effect of abrasive particle size on wear [J]. Wear, 1965, 8: 381
doi: 10.1016/0043-1648(65)90169-9
[33] Hutchings I, Shipway P. Tribology [M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2017: 165, 7
[34] Vakis A I, Yastrebov V A, Scheibert J, et al. Modeling and simulation in tribology across scales: An overview [J]. Tribol. Int., 2018, 125: 169
doi: 10.1016/j.triboint.2018.02.005
[35] Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy [J]. Acta Mater., 2013, 61: 1648
doi: 10.1016/j.actamat.2012.11.041
[36] Diomidis N. Wear of Orthopaedic Implants and Artificial Joints [M]. Philadelphia: Woodhead Publishing, 2013: 246
[37] Rainforth W M, Zeng P, Ma L, et al. Dynamic surface microstructural changes during tribological contact that determine the wear behaviour of hip prostheses: metals and ceramics [J]. Faraday Discuss., 2012, 156: 41
pmid: 23285621
[38] Pourzal R, Theissmann R, Morlock M, et al. Micro-structural alterations within different areas of articulating surfaces of a metal-on-metal hip resurfacing system [J]. Wear, 2009, 267: 689
doi: 10.1016/j.wear.2009.01.012
[39] Wimmer M A, Fischer A, Büscher R, et al. Wear mechanisms in metal-on-metal bearings: The importance of tribochemical reaction layers [J]. J. Orthop. Res., 2010, 28: 436
doi: 10.1002/jor.21020 pmid: 19877285
[40] Catelas I, Wimmer M A, Utzschneider S. Polyethylene and metal wear particles: Characteristics and biological effects [J]. Semin. Immunopathol., 2011, 33: 257
pmid: 21267569
[41] Oberle T L. Properties influencing wear of metals [J]. J. Met., 1951, 3: 438
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[3] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[4] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[5] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[8] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[9] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[10] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[11] 安子冰, 毛圣成, 张泽, 韩晓东. 高熵合金跨尺度异构强韧化及其力学性能研究进展[J]. 金属学报, 2022, 58(11): 1441-1458.
[12] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[13] 孙士杰, 田艳中, 张哲峰. 析出强化Fe53Mn15Ni15Cr10Al4Ti2C1 高熵合金强韧化机制[J]. 金属学报, 2022, 58(1): 54-66.
[14] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
[15] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.