|
|
(TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为 |
宋芊汀1,2, 徐映坤1, 徐坚1( ) |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Dry-Sliding Wear Behavior of (TiZrNbTa)90Mo10 High-Entropy Alloy Against Al2O3 |
SONG Qianting1,2, XU Yingkun1, XU Jian1( ) |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
Qianting SONG,
Yingkun XU,
Jian XU.
Dry-Sliding Wear Behavior of (TiZrNbTa)90Mo10 High-Entropy Alloy Against Al2O3[J]. Acta Metall Sin, 2020, 56(11): 1507-1520.
[1] |
Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
pmid: 9839998
|
[2] |
Karachalios T, Karydakis G. European Instructional Lectures [M]. Berlin, Heidelberg: Springer, 2011: 133
|
[3] |
Muñoz A I, Mischler S. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys [J]. J. Mater. Sci. Mater. Med., 2011, 22: 437
|
[4] |
Goodman S B, Gómez Barrena E, Takagi M, et al. Biocompatibility of total joint replacements: A review [J]. J. Biomed. Mater. Res., 2009, 90A: 603
|
[5] |
Golish S R, Anderson P A. Bearing surfaces for total disc arthroplasty: Metal-on-metal versus metal-on-polyethylene and other biomaterials [J]. Spine J., 2012, 12: 693
pmid: 21700505
|
[6] |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
[7] |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
[8] |
Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
|
[9] |
Todai M, Nagase T, Hori T, et al. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials [J]. Scr. Mater., 2017, 129: 65
|
[10] |
Wang S P, Xu J. (TiZrNbTa)-Mo high-entropy alloys: Dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening [J]. Intermetallics, 2018, 95: 59
|
[11] |
Song Q T, Xu J. (TiZrNbTa)90Mo10 high-entropy alloy: Electrochemical behavior and passive film characterization under exposure to Ringer's solution [J]. Corros. Sci., 2020, 167: 108513
|
[12] |
Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content [J]. Wear, 2006, 261: 513
|
[13] |
Ayyagari A, Barthelemy C, Gwalani B, et al. Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments [J]. Mater. Chem. Phys., 2018, 210: 162
|
[14] |
Hsu C Y, Sheu T S, Yeh J W, et al. Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys [J]. Wear, 2010, 268: 653
|
[15] |
Joseph J, Haghdadi N, Shamlaye K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures [J]. Wear, 2019, 428-429: 32
|
[16] |
Ye Y X, Liu C Z, Wang H, et al. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique [J]. Acta Mater., 2018, 147: 78
|
[17] |
Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 126
|
[18] |
Wang Y, Shi L L, Duan D L, et al. Tribological properties of Zr61Ti2Cu25Al12 bulk metallic glass under simulated physiological conditions [J]. Mater. Sci. Eng., 2014, C37: 292
|
[19] |
Straffelini G, Molinari A. Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions [J]. Wear, 1999, 236: 328
|
[20] |
Ureña J, Tabares E, Tsipas S, et al. Dry sliding wear behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications [J]. J. Mech. Behav. Biomed. Mater., 2019, 91: 335
|
[21] |
Branco A C, Moreira V, Reis J A, et al. Influence of contact configuration and lubricating conditions on the microtriboactivity of the zirconia-Ti6Al4V pair used in dental applications [J]. J. Mech. Behav. Biomed. Mater., 2019, 91: 164
|
[22] |
Wang S P, Ma E, Xu J. Notch fracture toughness of body-centered-cubic (TiZrNbTa)-Mo high-entropy alloys [J]. Intermetallics, 2018, 103: 78
doi: 10.1016/j.intermet.2018.10.008
|
[23] |
Qu J, Blau P J, Watkins T R, et al. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces [J]. Wear, 2005, 258: 1348
|
[24] |
Xiang D D, Song J, Wang S, et al. Study on tribological properties of CoCrMo alloys against metals and ceramics as bearing materials for artificial cervical disc [J]. J. Mater. Eng. Perform., 2018, 27: 517
|
[25] |
Dong H, Bell T. Tribological behaviour of alumina sliding against Ti6Al4V in unlubricated contact [J]. Wear, 1999, 225: 874
|
[26] |
Farokhzadeh K, Edrisy A. Transition between mild and severe wear in titanium alloys [J]. Tribol. Int., 2016, 94: 98
doi: 10.1016/j.triboint.2015.08.020
|
[27] |
Li X X, Zhou Y, Ji X L, et al. Effects of sliding velocity on tribo-oxides and wear behavior of Ti-6Al-4V alloy [J]. Tribol. Int., 2015, 91: 228
doi: 10.1016/j.triboint.2015.02.009
|
[28] |
Doni Z, Alves A C, Toptan F, et al. Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys [J]. Mater. Des., 2013, 52: 47
doi: 10.1016/j.matdes.2013.05.032
|
[29] |
Molinari A, Straffelini G, Tesi B, et al. Dry sliding wear mechanisms of the Ti6Al4V alloy [J]. Wear, 1997, 208: 105
doi: 10.1016/S0043-1648(96)07454-6
|
[30] |
Wang X T, Padture N P, Tanaka H, et al. Wear-resistant ultra-fine-grained ceramics [J]. Acta Mater., 2005, 53: 271
doi: 10.1016/j.actamat.2004.09.020
|
[31] |
Archard J F. Contact and rubbing of flat surfaces [J]. J. Appl. Phys., 1953, 24: 981
doi: 10.1063/1.1721448
|
[32] |
Rabinowicz E, Mutis A. Effect of abrasive particle size on wear [J]. Wear, 1965, 8: 381
doi: 10.1016/0043-1648(65)90169-9
|
[33] |
Hutchings I, Shipway P. Tribology [M]. 2nd Ed., Oxford: Butterworth-Heinemann, 2017: 165, 7
|
[34] |
Vakis A I, Yastrebov V A, Scheibert J, et al. Modeling and simulation in tribology across scales: An overview [J]. Tribol. Int., 2018, 125: 169
doi: 10.1016/j.triboint.2018.02.005
|
[35] |
Koizumi Y, Suzuki S, Yamanaka K, et al. Strain-induced martensitic transformation near twin boundaries in a biomedical Co-Cr-Mo alloy with negative stacking fault energy [J]. Acta Mater., 2013, 61: 1648
doi: 10.1016/j.actamat.2012.11.041
|
[36] |
Diomidis N. Wear of Orthopaedic Implants and Artificial Joints [M]. Philadelphia: Woodhead Publishing, 2013: 246
|
[37] |
Rainforth W M, Zeng P, Ma L, et al. Dynamic surface microstructural changes during tribological contact that determine the wear behaviour of hip prostheses: metals and ceramics [J]. Faraday Discuss., 2012, 156: 41
pmid: 23285621
|
[38] |
Pourzal R, Theissmann R, Morlock M, et al. Micro-structural alterations within different areas of articulating surfaces of a metal-on-metal hip resurfacing system [J]. Wear, 2009, 267: 689
doi: 10.1016/j.wear.2009.01.012
|
[39] |
Wimmer M A, Fischer A, Büscher R, et al. Wear mechanisms in metal-on-metal bearings: The importance of tribochemical reaction layers [J]. J. Orthop. Res., 2010, 28: 436
doi: 10.1002/jor.21020
pmid: 19877285
|
[40] |
Catelas I, Wimmer M A, Utzschneider S. Polyethylene and metal wear particles: Characteristics and biological effects [J]. Semin. Immunopathol., 2011, 33: 257
pmid: 21267569
|
[41] |
Oberle T L. Properties influencing wear of metals [J]. J. Met., 1951, 3: 438
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|