Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 821-830    DOI: 10.11900/0412.1961.2019.00306
  本期目录 | 过刊浏览 |
选区激光熔化专用AlSiMg合金成分设计及力学性能
耿遥祥(), 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华
江苏科技大学材料科学与工程学院 镇江 212003
Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting
GENG Yaoxiang(), FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua
School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
引用本文:

耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
Yaoxiang GENG, Shimin FAN, Jianglin JIAN, Shu XU, Zhijie ZHANG, Hongbo JU, Lihua YU, Junhua XU. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. Acta Metall Sin, 2020, 56(6): 821-830.

全文: PDF(4779 KB)   HTML
摘要: 

应用“团簇+连接原子”模型,基于合金液-固局域结构相容性和金属选区激光熔化(SLM)工艺熔体急冷的技术特性,设计高Mg含量SLM专用AlSiMg1.5合金新成分,系统研究时效温度和时间对SLM成形AlSiMg1.5合金显微组织和力学性能的影响。结果表明,通过调整工艺参数,可获得近乎全致密的SLM成形样品。当时效温度为300 ℃时,随着时效时间的延长,SLM成形样品岛状富Al组织中过固溶Si逐渐析出长大,网格状富Si组织逐渐分解球化,样品的硬度和压缩屈服强度逐渐降低,塑性明显增加。当时效温度为150 ℃时,不同时效时间下SLM成形样品的显微组织没有发生明显变化,但硬度和屈服强度随时效时间的延长先增大后略有降低。SLM成形AlSiMg1.5样品经150 ℃时效处理后的最大显微硬度和压缩屈服强度分别为(169±1) HV和(453±4) MPa,样品延伸率超过25%。本工作设计获得了成形性和力学性能优异的SLM专用铝合金新成分Al91.0Si7.5Mg1.5 (质量分数,%)。

关键词 选区激光熔化成分设计AlSiMg1.5合金时效处理显微组织力学性能    
Abstract

Using complex shapes and precise structural parts is becoming a strong trend in modern advanced manufacturing. However, traditional manufacturing technology hardly achieves the complex geometric parts directly. Selective laser melting (SLM) is an advanced manufacturing technology for metallic materials, enables production parts with complex geometry combined with the enhancement of design flexibility. The cooling rate of molten pool can reach 103~106 K/s during the SLM process. In this case, the solid solubility of the alloying elements in the matrix can be greatly enhanced. Aluminum alloy has been widely used in industry. At present, the strength of SLM-formed aluminum alloys is far lower than that of high-strength aluminum alloys obtained from a traditional process. It is necessary to develop high-strength aluminum alloy composition based on SLM technical characteristics. The present study is devoted to design high-strength AlSiMg1.5 aluminum alloy specifically for SLM using the local structure model based on the liquid-solid structural compatibility of the alloy and the technical characteristics of the liquid quenching in SLM. The effect of the ageing treatment on the microstructure, the hardness, and the compressive properties of the SLM-formed AlSiMg1.5 alloy was systematically studied. Almost completely dense samples were obtained by adjusting the parameters of SLM process. When the ageing temperature was 300 ℃, the super-solid solution Si precipitated and grew in the island-like Al-rich structure, and the reticular Si-rich structure decomposed and spheroidized gradually with the increases of ageing time of SLM-formed AlSiMg1.5 samples. In this case, the hardness and the strength of the samples decreased, but the elongation increased significantly. The microstructures of the SLM-formed AlSiMg1.5 samples did not change obviously when the ageing temperature was 150 ℃. But the hardness and yield strength of the samples significantly increased first and then decreased slightly. The maximum microhardness and compressive yield strength of SLM-formed AlSiMg1.5 samples aged at 150 ℃ were (169±1) HV and (453±4) MPa, respectively, and the elongation of samples exceeds 25%. In this study, a special Al91.0Si7.5Mg1.5 (mass fraction, %) aluminum alloy specifically for SLM with excellent formability and mechanical properties was designed.

Key wordsselective laser melting    composition design    AlSiMg1.5 alloy    ageing treatment    microstructure    mechanical property
收稿日期: 2019-09-17     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划项目(2016YFB1100103);国家自然科学基金项目(51801079);江苏省自然科学基金青年基金项目(BK20180985);江苏省自然科学基金青年基金项目(BK20180987);江苏省高等学校自然科学研究面上项目(18KJB430011)
作者简介: 耿遥祥,男,1986年生,副教授,博士
图1  基于α-(Al, Si)和Mg2Si的[Si-Al12]和[Si-Mg8]团簇
PowderSiMgFeAl
Designed chemical composition7.51.50.0Bal.
Actual chemical composition8.11.40.2Bal.
表1  AlSiMg合金粉末设计化学成分与实际化学成分对比结果 (mass fraction / %)
图2  AlSiMg1.5粉末样品表面SEM像和粒径分布
图3  选区激光熔化(SLM)成形AlSiMg1.5样品宏观照片
图4  激光功率为300 W、扫描速率为800和1200 mm/s时SLM成形AlSiMg1.5样品纵剖面的OM像
图5  SLM成形AlSiMg1.5样品的孔隙率随激光功率和扫描速率的变化
图6  SLM成形AlSiMg1.5样品纵剖面显微组织的SEM像
图7  SLM成形AlSiMg1.5样品的TEM明场像及对应的成分分布
图8  SLM成形AlSiMg1.5样品在300 ℃下时效处理不同时间后的SEM像
图9  SLM成形AlSiMg1.5样品在150 ℃下时效处理18和48 h后显微组织的SEM像
图10  SLM成形AlSiMg1.5样品在不同时效条件下的XRD谱
图 11  SLM成形AlSiMg1.5样品的硬度随时效时间的变化
图12  不同时效条件下SLM成形样品的压缩应力-应变曲线和力学性能
[1] Wang H Z, Leung D Y C, Leung M K H, et al. A review on hydrogen production using aluminum and aluminum alloys [J]. Renewable Sustainable Energy Rev., 2009, 13: 845
[2] Valiev R Z, Murashkin M Y, Sabirov I. A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity [J]. Scr. Mater., 2014, 76: 13
doi: 10.1016/j.scriptamat.2013.12.002
[3] Li L, Xia C D, Song Y B, et al. Application status and outlook of aluminum alloys in new energy vehicles [J]. Light Alloy Fab. Technol., 2017, 45(9): 18
[3] 李 龙, 夏承东, 宋友宝等. 铝合金在新能源汽车工业的应用现状及展望 [J]. 轻合金加工技术, 2017, 45(9): 18
[4] Jia Y J, Yang Y J, Yuan H M. Application and development of aluminum alloy conductor in China [J]. Nonferrous Met. Process., 2017, 46(3): 9
[4] 贾艳军, 杨亚军, 袁红梅. 铝合金导线在我国的应用及发展 [J]. 有色金属加工, 2017, 46(3): 9
[5] Wang R B. Study on defects analysis and heat treatment of cast aluminum alloys [J]. Nonferrous Met. Process., 2008, 37(5): 10
[5] 王荣滨. 铸造铝合金缺陷分析与热处理工艺研究 [J]. 有色金属加工, 2008, 37(5): 10
[6] An Z Y, Wan L, Huang Z Y, et al. Defects analysis and countermeasures of die-casting aluminum alloy gear-box [J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 509
[6] 安肇勇, 万 里, 黄志垣等. 变速箱侧盖压铸成形的缺陷分析及对策 [J]. 特种铸造及有色合金, 2015, 35: 509
[7] Li X Y, Wang D C, Liu F, et al. Visioning-future of advanced manufacture technology & equipment-present situation & tendency of advanced forming technique & equipment [J]. J. Mech. Eng., 2010, 46(17): 100
[7] 李新亚, 王德成, 刘 丰等. 先进成形技术与装备发展道路刍议-先进成形技术与装备发展现状与趋势 [J]. 机械工程学报, 2010, 46(17): 100
[8] Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting [J]. Chin. J. Lasers, 2011, 38: 0601007
[8] 杨永强, 王 迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展 [J]. 中国激光, 2011, 38: 0601007
[9] Zhang C Y, Ren Y P, Chen X S. The development situation of selective laser melting metal powder based on 3D printing [J]. Appl. Mech. Mater., 2014, 518: 12
doi: 10.4028/www.scientific.net/AMM.518
[10] Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J]. Mater. Des., 2012, 34: 159
[11] Fiocchi J, Tuissi A, Bassani P, et al. Low temperature annealing dedicated to AlSi10Mg selective laser melting products [J]. J. Alloys Compd., 2017, 695: 3402
[12] Rao H, Giet S, Yang K, et al. The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting [J]. Mater. Des., 2016, 109: 334
[13] Wei P, Wei Z Y, Chen Z, et al. The AlSi10Mg samples produced by selective laser melting: Single track, densification, microstructure and mechanical behavior [J]. Appl. Surf. Sci., 2017, 408: 38
[14] Zhang W Q, Zhu H H, Hu Z H, et al. Study on the selective laser melting of AlSi10Mg [J]. Acta Metall. Sin., 2017, 53: 918
[14] 张文奇, 朱海红, 胡志恒等. AlSi10Mg的激光选区熔化成形研究 [J]. 金属学报, 2017, 53: 918
[15] Wang X J, Zhang L C, Fang M H, et al. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy [J]. Mater. Sci. Eng., 2014, A597: 370
[16] Reschetnik W, Brüggemann J P, Aydinöz M E, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy [J]. Procedia Struct. Integr., 2016, 2: 3040
[17] Spierings A B, Dawson K, Dumitraschkewitz P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition [J]. Addit. Manuf., 2018, 20: 173
[18] Sing S L, An J, Yeong W Y, et al. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs [J]. J. Orthop. Res., 2016, 34: 369
[19] Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2014, A590: 153
[20] Jahn M, Luttmann A, Schmidt A, et al. Finite element methods for problems with solid-liquid-solid phase transitions and free melt surface [J]. Proc. Appl. Math. Mech., 2012, 12: 403
doi: 10.1002/pamm.201210190
[21] Criales L E, Arısoy Y M, Özel T. Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625 [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 2653
[22] Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40D: R273
[23] Geng Y X, Wang Y M, Wang Z R, et al. Formation and structure-property correlation of new bulk Fe-B-Si-Hf metallic glasses [J]. Mater. Des., 2016, 106: 69
[24] Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459
[24] 耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459
[25] Ma Y P, Dong D D, Dong C, et al. Composition formulas of binary eutectics [J]. Sci. Rep., 2015, 5: 17880
[26] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[27] Geng Y X, Zhang Z J, Wang Y M, et al. Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys [J]. Acta Metall. Sin., 2017, 53: 369
[27] 耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联 [J]. 金属学报, 2017, 53: 369
[28] Geng Y X, Lin X, Qiang J B, et al. Dual-cluster characteristic and composition optimization of finemet soft magnetic nanocrystalline alloys [J]. Acta Metall. Sin., 2017, 53: 833
[28] 耿遥祥, 林 鑫, 羌建兵等. Finemet型纳米晶软磁合金的双团簇特征与成分优化 [J]. 金属学报, 2017, 53: 833
[29] Geng Y X, Ding H Y, Wang D P, et al. Formation and structural evolution of Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 nanocrystalline alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 313
[30] Tang P J, He X L, Yang B, et al. Microstructure and properties of AlSi10Mg powder for selective laser melting [J]. J. Aeronaut. Mater., 2018, 38: 47
[30] 唐鹏钧, 何晓磊, 杨 斌等. 激光选区熔化用AlSi10Mg粉末显微组织与性能 [J]. 航空材料学报, 2018, 38: 47
[31] Dai D H, Gu D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder [J]. Int. J. Mach. Tools Manuf., 2015, 88: 95
[32] Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism [J]. Mater. Sci. Eng., 2016, A663: 116
[33] Marola S, Manfredi D, Fiore G, et al. A comparison of selective laser melting with bulk rapid solidification of AlSi10Mg alloy [J]. J. Alloys Compd., 2018, 742: 271
[34] Iturrioz A, Gil E, Petite M M, et al. Selective laser melting of AlSi10Mg alloy: Influence of heat treatment condition on mechanical properties and microstructure [J]. Weld. World, 2018, 62: 885
doi: 10.1007/s40194-018-0592-8
[35] Fousová M, Dvorský D, Michalcová A, et al. Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures [J]. Mater. Charact., 2018, 137: 119
doi: 10.1016/j.matchar.2018.01.028
[36] Wang M, Song B, Wei Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy [J]. Mater. Sci. Eng., 2019, A739: 463
[37] Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment [J]. Mater. Sci. Eng., 2016, A667: 139
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.