金属学报, 2020, 56(6): 801-820 DOI: 10.11900/0412.1961.2019.00451

二元互不固溶金属合金化的研究进展

黄远,, 杜金龙, 王祖敏

天津大学材料科学与工程学院 天津 300354

Progress in Research on the Alloying of Binary Immiscible Metals

HUANG Yuan,, DU Jinlong, WANG Zumin

School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China

通讯作者: 黄 远,yi_huangyuan@tju.edu.cn,主要从事金属基复合材料和金属连接的研究

责任编辑: 肖素红

收稿日期: 2019-12-17   修回日期: 2020-04-13   网络出版日期: 2020-05-25

基金资助: 国家重点研发计划项目.  2018YFB0703904
国家重点研发计划项目.  2017YFE0302600
国家自然科学基金项目.  51471114
国家自然科学基金项目.  51171128

Corresponding authors: HUANG Yuan, professor, Tel: 13920838071, E-mail:yi_huangyuan@tju.edu.cn

Received: 2019-12-17   Revised: 2020-04-13   Online: 2020-05-25

Fund supported: National Key Research and Development Program of China.  2018YFB0703904
National Key Research and Development Program of China.  2017YFE0302600
National Natural Science Foundation of China.  51471114
National Natural Science Foundation of China.  51171128

作者简介 About authors

黄远,男,1970年生,教授,博士

摘要

基于二元互不固溶金属体系的材料在航天、核聚变工程、电子封装以及反装甲武器等领域中有着广泛的应用,但由于反应热为正、组元性质差异较大,其直接合金化以及相应的材料制备都十分困难。针对于此,国内外开发了多种用于二元互不固溶金属直接合金化的方法,并对合金化过程的热力学和扩散机制进行了研究。本文首先综述了机械合金化、物理气相沉积和离子束混合3种已有合金化方法的原理、热力学机制及其在二元互不固溶金属粉末合金和纳米多层膜等材料中的应用。然后,介绍了近些年来本研究组提出并发展的辐照损伤诱发合金化、高温结构诱发合金化等新型互不固溶金属合金化方法,详细阐述了这2种方法的原理、合金化界面显微结构、热力学机制、扩散机制和应用。最后,展望了二元互不固溶金属体系合金化研究的发展趋势。

关键词: 二元互不固溶金属体系 ; 直接合金化 ; 热力学机制 ; 显微结构 ; 力学性能

Abstract

Materials based on binary immiscible metal systems are widely used in aerospace, nuclear fusion engineering, electronic packaging, anti-armor weapons and other fields. However, due to the positive formation heat and the large differences in the properties of the component, the direct alloying of binary immiscible metals and the preparation of the corresponding materials are very difficult. Varieties of methods have been developed for direct alloying of binary immiscible metals at home and abroad, and the thermodynamic and diffusion mechanism of these methods have been studied. In this review, firstly the principle and thermodynamic mechanism of mechanical alloying, physical vapor deposition and ion beam mixing, as well as their applications in binary immiscible metal powder alloys and nano-multilayer films are reviewed. Then the irradiation damage alloying (IDA) and high-temperature structure induced alloying (HTSIA) methods that are proposed and developed by our group are introduced. Besides, the principle, interfacial microstructure, thermodynamic mechanism, diffusion mechanism and application of these two methods were described in detail. Finally, the development trend of the research on alloying of binary immiscible metals is proposed.

Keywords: binary immiscible metallic alloy ; direct alloying ; thermodynamic mechanism ; microstructure ; mechanical property

PDF (3903KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展. 金属学报[J], 2020, 56(6): 801-820 DOI:10.11900/0412.1961.2019.00451

HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals. Acta Metallurgica Sinica[J], 2020, 56(6): 801-820 DOI:10.11900/0412.1961.2019.00451

目前已经得到应用的众多二元金属体系大多数是负生成热的体系,这就意味着由于Gibbs自由能的减小,这些金属体系的组成元素在原子尺度上具有自发合金化的趋势。但是,在常温常压条件下,仍然有很多二元金属体系由于缺少热力学驱动力不能合金化,这些金属体系中有些体系仅在固态下有正的生成热,体系的组成元素在高温下能发生混合反应,但在低温下发生相分离,且没有相互固溶度或中间相;有些体系则不论是在固态还是液态下均具有正的生成热,体系组成元素即使在高温液态也表现出很小或者没有固溶度[1]。这些金属体系通常称为“二元互不固溶金属体系”或“二元难互溶金属体系”。显然,实现二元互不固溶金属的直接合金化是一个非常困难的事情。

基于二元互不固溶金属体系的合金、复合材料以及薄膜等材料在国民经济和科技各领域有着广泛而重要的应用,如W/Cu复合材料不仅能够承受高能粒子的轰击,而且具有良好的散热性能,非常适合应用于面向等离子体元件(plasma facing components,PFCs)[2,3,4,5];兼具高强度高导电性的Cu-Nb微观复合材料被应用于非破坏性脉冲强磁场领域,100 T的磁场下磁应力就达到4 GPa,也可用作大规模集成电路和大功率微波器件中的基片、嵌块、连接件及散热原件等[6];Mo/Cu、W/Ag复合材料广泛用于电子工业和核反应堆,包括大功率半导体散热材料、陶瓷密封材料、高载流触点和聚变反应堆的分流器等[7,8,9];Mo/Ag层状复合材料可作为近地轨道航天器太阳阵列的互联片,能有效延长航天器的轨道寿命[10,11]。但是,这些材料的制备过程都涉及到了前面所述的互不固溶金属直接合金化的难题。实现互不固溶金属的直接合金化并了解合金化过程中的相转变机理,不仅是对传统的金属合金化方法和相转变理论的重要突破和补充,也有助于提高对金属资源的利用。

二元互不固溶金属直接合金化后生成的合金相主要有2种:一种是过饱和的固溶相[12,13];另一种是非晶相[14,15,16]。要实现互不固溶金属元素的直接合金化,并使合金化后的体系在室温下稳定存在,应该采用热力学上高度非平衡的合金化方法,人为地获得热力学驱动力和金属原子相互扩散的通道,克服正的生成热的影响。

近年来,已经出现了多种热力学上高度非平衡的合金化方法,相关的合金化机制也得到了一定程度的研究。本文首先从已经报道的二元互不固溶金属合金化方法出发,综合阐述机械合金化、物理气相沉积(主要包括蒸镀和溅射)和离子束混合等非平衡方法在二元互不固溶金属合金化以及相关的粉末合金和纳米多层膜材料制备中的应用,并阐述合金化过程中显微组织演化过程、热力学机制以及所制备材料的力学性能和物理性能与组织结构的关系等。然后,对本研究组提出并发展的辐照损伤合金化和高温结构诱发合金化新型合金化方法进行详细介绍,分析合金化过程界面显微组织、热力学原理及扩散机制。最后,对二元互不固溶金属合金化研究的发展趋势进行展望。

1 二元互不固溶金属机械合金化

机械合金化(mechanical alloying,MA)是指利用机械能的作用使材料组元在常温下实现合金化的材料制备技术[17]。实现机械合金化的方法有高能球磨、复合轧制、高速挤压等,其中高能球磨应用最为广泛。在高能球磨的过程中,通过磨球、金属粉末和球罐之间的相互作用,将高能量机械能不断地传递给合金粉末,粉末颗粒发生变形、断裂和冷焊,颗粒尺寸不断细化,位错等晶体缺陷不断增加,致使合金粉末之间发生扩散和固态反应。这最终导致材料发生一系列的显微组织变化和非平衡相变,形成各类非平衡态结构,如过饱和固溶体、非晶、纳米相[18]复合结构等。

机械合金化方法作为一种非平衡态下的合金制备技术,在二元互不固溶金属合金化方面得到了应用和关注。相关研究重点集中在合金化的实现、合金化过程中的微观组织演变、合金化产物高温热稳定性和力学性能等方面。例如,Darling等[19]通过高能低温机械合金化制备Cu-10%Ta (原子分数,下同)纳米晶体材料,其显微组织为球形粒子的Ta和纳米薄片状的Ta组成的两相复合结构,弥散分散在富Cu的Cu-2%Ta固溶相基体中。这表明通过高能球磨,Cu和Ta之间发生了一定程度的直接合金化,所得产物整体表现为一种Cu/Ta固溶体。在随后的600 ℃高温退火过程中,Cu/Ta固溶体合金发生相分离和相分离产物形核长大,并演化成由富Cu纳米晶(或超细晶)基体相和均匀分散的Ta相组成的复合体。其中,Ta相有的为原子团簇形式,有的则为直径几百纳米的Ta颗粒,它们的体积分数最终取决于退火温度。研究[19]也发现由于Ta粒子占据晶界位置,Cu纳米晶(超细晶)基体相在达到Cu熔点之前的高温下不再继续粗化,并在极高的等温条件下得以保留。

Rajagopalan等[20]采用了高温原位透射电镜(in situ TEM)实验以及分子动力学模拟的方法研究了温度对上述Cu-10%Ta合金微观组织变化的影响。结果表明,在100~400 ℃的升温过程中,Cu相的平均尺寸增长了12%,然而在0.5TmCu (TmCu表示Cu的熔点)时X射线衍射(XRD)谱的全半宽最大,表明Cu晶粒尺寸只增加了4%,Ta纳米团簇尺寸增加了10%,说明该合金具有抗粗化的能力。从宏观上看,Cu-10%Ta合金在高温时形状和尺寸基本保持稳定。此时,在Ta团簇和Cu基体相的界面处发现有局部结构变化,且Ta团簇和Cu基体相的晶格不匹配在高温条件下逐渐减小,这种精细结构变化是Cu/Ta合金具有良好热力学性能的关键。

Ren等[21]结合高能球磨和热压的方法制备了Cu90W10纳米复合材料,高压低温和高真空的条件下产生了致密的两相纳米合金,发现由于机械合金化的强制化学混合作用,使得平均直径大约为112 nm的W颗粒均匀地分布在Cu基体中。当在600 ℃退火1 h之后,W颗粒直径增长了12%,Cu/W复合材料的硬度降低5%,表明该Cu/W合金具有极好的高温热稳定性。另外,该Cu/W纳米复合材料在磨损过程中,塑性变形区的深度更小,也没有形成纳米化,这使得Cu/W复合材料拥有良好的耐磨性能。

在机械合金化过程中,晶体内部缺陷(如空位、位错等)和界面大量增加,同时外加机械能要转化成合金化的驱动力以及最终所获合金相的Gibbs自由能,这使得二元互不固溶金属体系的机械合金化过程的热力学机制呈现出独有的特点,这方面的研究也引起众多研究者的兴趣,相关研究得到了一定程度的开展。López等[22]利用在Miedema生成热模型的基础上发展起来的半定量热力学计算方法,成功地揭示了生成热为负值的二元合金系统中非晶态和亚稳晶相形成的热力学机制。这种方法只考虑合金元素的基本物理参量,不考虑合金相(如固溶体、非晶和中间相)的热力学参数,计算工作量小。因此许多学者也将该方法用于生成热为正值的二元互不固溶体系合金机械合金化过程的热力学计算[23,24],预测二元互不固溶金属体系MA过程中过饱和固溶体、非晶相和纳米相复合结构的形成。例如,研究者采用Alonso热力学模型计算了Cu/Cr[25]、Cr/Mo[13]、Ag/Cu[26]、Co/Cu[27]互不固溶金属体系机械合金化过程中形成过饱和固溶体的Gibbs自由能,并认为高能球磨过程中由于纳米晶尺寸减小,储藏在晶界内的额外自由能可以提供热力学驱动力,克服形成固溶体的热力学能垒,促进互不固溶体系固溶度的扩展[13,28,29]

大塑性变形(severe plastic deformation,SPD)方法也是一种机械合金化方法。该方法通过在块体材料上施加一个非常高的应变来实现合金化,同时不显著改变试样的原始尺寸并且能够产生优异的晶粒细化效果[30]。目前已经开发的大塑性变形方法主要有:高压扭转(high pressure torsion,HPT)[31,32,33]、累积叠轧(accumulative roll bonding,ARB)[34,35]、等通道转角挤压(equal channel angular extrusion or pressing,ECAE or ECAP)[31,33,36]等。大塑性变形方法实现低固溶度金属相互扩散进而实现合金化的原理和过程如图1所示。

图1

图1   大塑性变形的工艺示意图:高压扭转、等通道转角挤压、累积叠轧

Fig.1   Schematic illustrations of severe plastic defor-mation process

(a) high pressure torsion (P—pressure)

(b) equal channel angular extrusion (R—outer angular radius, Φ—inner corner angle, ψ—outer corner angle)

(c) accumulative roll bonding


目前,大塑性变形方法已经被许多学者用于制备基于Cu/Co[37,38,39]、Cu/Cr[40,41]、Cu/Nb[42,43]、Cu/W[44]、Cu/Ag[45]、Cu/Fe[46,47]、Zr/Nb[48]等二元互不固溶金属体系的合金。相关研究结果表明,大塑性变形方法能使这些二元互不固溶金属合金的固溶度都有不同程度增加,其原因在于剪切应变诱导互不固溶金属的化学混合发生。另外,研究也发现这种化学混合到达一定程度会停止。对于这一现象的解释,Zghal等[49]认为是在大塑性变形过程中难熔金属析出物颗粒变得太小以至于不能被剪切,还有一些解释是通过基于Gibbs-Thomson方程式[50]和Martin[51]的“有效温度”模型的热力学讨论来给出。

大塑性变形方法制备二元互不固溶金属合金不仅会经历微观组织变化,同时也有化学演变的过程。以Cu/Cr体系为例,Zhang等[41]在室温下采用HPT方法制备了块体Cu52Cr48纳米复合材料,通过球差校正透射电镜对该块体纳米复合材料的结构变化进行加热实时观察和记录,揭示了该材料的微观演变过程。根据观察结果,材料中的Cu/Cr过饱和纳米晶在212 ℃发生化学失稳,升温触发了强制混合区Cu和Cr的快速分离,并伴随着界面平均宽度的明显减小。随着温度升高到大约400 ℃,由于HPT的形变致使原子的移动能力显著增强,扩散系数显著增加,形变将诱发产生过多的空位。温度上升到400 ℃以后,形变不再诱导空位的产生。

Edwards等[44]分析了HPT过程中W25Cu纳米复合材料在不同应变率和退火温度的微观结构演变。结果表明,HPT过程会导致W颗粒破碎,颗粒直径下降到5~15 nm,同时产生空位。此时剪切应变以及空位将诱发W和Cu之间发生化学混合(扩散),产生合金化。当等效应变为256时,形成过饱和的W/Cu纳米结构。此时,W和Cu原子相互扩散使Cu的晶格常数增加,W的晶格常数减小。XRD和TEM结果表明,W25Cu的纳米结构在520 ℃以下具有良好的热稳定性,纳米结构(晶粒尺寸为70 nm)可以保留到720 ℃左右。

Ashkenazy等[52]对Cu/Ta、Cu/Nb和Cu/Ta体系在低温剪切变形下合金化的相平衡过程进行了分子动力学模拟。结果表明,当溶质原子浓度达到饱和限度(0.3%Ta、1%Nb、5%V,原子分数)时,体系开始出现fcc和非晶相的共存,达到稳态时两相比率遵循杠杆法则。当溶质原子浓度继续提高到8%V、9%Nb、24%Ta (原子分数)时,3个体系均会形成完全非晶相。同时,研究结果也表明,Cu/Nb体系在低温剪切变形条件下进行合金化,其达到平衡稳定状态与初始模型中的溶质粒子的分布状态(溶质粒子均匀分布或者以球形的bcc结构的颗粒分布在Cu基体中)无关,而Cu/Ta和Cu/V体系达到平衡稳定状态所需要的剪切应变则很大程度取决于溶质原子是均匀分布还是完全相分离的初始状态。

Valiev等[53]认为,大塑性变形方法除了实现合金化之外还能够显著细化材料的晶粒尺寸,平均晶粒尺寸可以达到亚微米或纳米级,且材料的微观组织均匀化。因此,通过大塑性变形方法制备的超细晶材料具有优良的抗拉强度、超塑性成形能力和耐腐蚀性能,能够很好地满足工业需要。目前大塑性变形方法已经在航空航天、电子、国防等领域被广泛用[54,55]

2 二元互不固溶金属物理气相沉积合金化

物理气相沉积(physical vapor deposition,PVD)是一种对材料表面进行改性处理的高新技术,最初和最成功的发展是在半导体工业、航天航空等特殊领域。近年来,物理气相沉积技术如真空蒸镀和溅射等也被用来实现二元互不固溶金属的合金化,制备二元互不固溶金属纳米薄膜或多层膜结构材料等。相关研究主要涉及纳米薄膜和多层膜结构材料的制备与调控(即二元互不固溶金属的直接合金化)、力学和电学性能、显微结构与性能关系分析、稳定性(相分离的可能性)评估等。

物理气相沉积实现二元互不固溶金属直接合金化的原理和过程如图2所示。具体过程为:利用蒸发或溅射等物理形式使金属从靶材源移走,然后在真空环境中使这些携带能量的蒸气粒子沉积到基底片上形成多层薄膜。通过这个过程,互不固溶金属之间产生了化学混合,达到了扩散的效果,最终实现了合金化。

图2

图2   物理气沉积示意图

Fig.2   Schematic diagram of physical vapor deposition

(a) vacuum evaporation (b) sputtering


通过物理气相沉积直接合金化获得的合金化结构具有非常独特的特点。以Nb/Cu体系为例,在溅射沉积的小周期Nb/Cu纳米多层膜中,Nb和Cu发生扩散形成了冶金结合界面。界面上Nb和Cu一般存在Kurdjumov-Sachs (K-S)取向关系,即<110>fcc//<111>bcc,此时界面上的晶格错配度大约为11%,在K-S方向上形成半共格界面[56]。研究结果还表明,随着周期减小,Nb/Cu纳米多层膜合金化界面上非共格晶面密度增大,晶粒尺寸减小,这将使Nb/Cu纳米多层膜的应变敏感率基本保持不变[57]。但Nb/Cu纳米多层膜在400 ℃真空退火后,合金化界面上晶格共格程度下降、晶粒长大,这导致其应变敏感率显著降低。

此外,张欣等[58]通过单轴拉伸实验并结合原位电阻测量法,研究了恒定调制比(组元各层厚度之比)下调制周期(相邻2种不同组元厚度的和)对物理气相沉积所制备的Nb/Cu纳米多层膜金属延性和断裂韧性的影响,通过该项研究来说明合金化界面的力学特性。结果表明,延性和断裂行为均对调制周期的尺寸有明显的依赖性:随着调制波长的减小,延性和断裂韧性均呈现非单调演变趋势,即当调制比小于0.5时,随着调制周期减小,延性增加;当调制比大于0.5时,随着调制周期减小,延性减小。Zhang等[59]采用直流磁控溅射制备调制周期为5~300 nm的Nb/Cu纳米多层膜,发现在此调制周期范围内,Nb发生bcc-fcc结构的相转变,从而与Cu形成fcc/fcc界面,实现了Nb/Cu合金化。研究结果也表明,由于fcc/fcc界面处产生了较大的晶格错配度和较高的位错密度,与上述具有<111>bcc/<110>fcc合金化界面的Nb/Cu纳米多层膜材料相比,具有fcc/fcc合金化界面的Nb/Cu纳米多层材料的强度和硬度更高。

通过物理气相沉积直接合金化制备的Ag/Cu[60,61]、Mo/Cu[62,63]、Nb/Cu[64,65]、W/Cu[66,67,68]和Nb/Ag[69]等二元互不固溶金属纳米多层膜的力学和电学性能也被广泛研究。例如,Fenn等[64]和Lima等[65]研究发现,Nb/Cu纳米多层膜的电阻率随Cu层减薄或Nb层增厚而增加,其中Cu层影响最显著。同时,电阻率随调制周期减小而增加,电输运性质的层厚依赖性较强。Monclús等[66]采用直流磁控溅射制备了单层厚度为5~30 nm的W/Cu纳米多层膜,发现W/Cu纳米多层膜的硬度不依赖于单层厚度,并在200 ℃以上温度退火时硬度急剧下降。Wen等[67]则发现W/Cu纳米多层膜的硬度随着调制周期的减小而增大,并且由于Cu和W的相互混合引起W外延平面间距的减小,从而导致W/Cu弹性模量的增加。郭中正等[68]分析了调制周期和调制比对W/Cu多层膜力学和电学性能的影响,结果表明,多层膜裂纹萌生临界应变总体上随调制周期增大或调制比减小而下降,屈服强度、显微硬度和电阻率总体上均与调制周期和调制比呈负相关。郭中正等[63]也分析了Mo/Cu纳米多层膜的力学和电学性能的影响因素,发现随着调制周期的增加,Cu层变厚,晶粒尺寸增加、界面度减小,使Cu层位错运动阻力减小,塑性变形能力增强,裂纹萌生临界应变增加。调制波长的增加也会使Mo/Cu层间界面数量减小,减弱了层内和层间的电子散射,使电导率得以提高。Lai等[69]研究发现,在Nb/Ag纳米多层膜中,当单层膜厚度为4 nm时,某些区域尺寸为3~8 nm的晶粒被非晶合金包围,使其位错变形机制无法实现,从而使硬度得到极大提高。可见,通过物理气相沉积直接合金化制备的二元互不固溶金属纳米多层膜的力学和电学性能与多层膜的调制周期、合金化界面结构有着密切的关联。

关于二元互不固溶金属纳米多层膜的强度与调制周期、合金化界面结构的关系已有了较为完善的模型和理论体系,如Hall-Petch模型[70]、单个位错滑移机制(CLS模型)[71]、弹性模量错配模型(Koehler模型)[72]及共格应力模型[73]等。结果表明,不同的纳米多层结构表现出不同的强化机理。如具有连续层状结构的W/Cu、Ag/Cu、Ag/Co等纳米多层膜,由于界面和晶界对位错运动的阻碍作用,引起位错塞积,此时多层膜的强化机制与细晶强化类似,符合Hall-Petch关系。而具有超晶格结构的Cu/Co和Nb/Cu纳米多层膜,利用TEM和扫描电镜(SEM)观察多层膜的截面形貌,发现形成了连续的柱状晶结构,并且柱状晶贯穿整个薄膜厚度,且柱状晶的宽度远大于调制周期。又因为多层膜的调制周期对塑性变形行为起着决定性的作用,因此Cu/Co和Nb/Cu纳米多层膜塑性变形机制为单个位错滑移机制[74]

根据相图可知,二元互不固溶金属合金化后理论上有可能发生相分离。另外,由于二元互不固溶金属性质差异较大,如热膨胀系数。这些都会影响到所制备材料的热稳定性,甚至导致材料失效,因此二元互不固溶金属纳米多层膜的热稳定性研究得到了广泛关注。Troche等[75]分析了通过物理气相沉积直接合金化制备的Nb/Cu多层膜在不同退火温度下的结构转变。结果表明,退火温度和Nb层厚度对Nb粒子尺寸、长大速率和形状的稳定性有着显著影响。随着退火温度升高和Nb层厚度增加,Nb粒子逐渐球化。Lee等[76]发现,利用磁控溅射制备的Cu/Ta多层膜在500~800 ℃范围退火时显微结构会发生巨大的改变。在600 ℃退火时,β-Ta/Cu界面会形成非晶层,同时α-Ta开始形核,Cu和Ta原子之间的相互扩散导致结构失稳。Moszner等[77]发现,利用磁控溅射制备的W/Cu纳米多层膜在500 ℃退火时,表面形成了由大量Cu原子组成的线状凸起,当升温到700 ℃时,初始的层状结构开始退化并形成W颗粒镶嵌在Cu基体中的结构。Ma等[78]采用直流磁控溅射方法制备Ag/Cu多层膜,发现Ag/Cu多层膜的单层厚度小于20 nm时,在200 ℃退火时异质界面完全消失。当单层厚度大于20 nm时,完整的层状结构能保持到300 ℃。总体而言,这方面的研究还不是很多,相关规律掌握较少,比如相分离对性能影响的研究还需加强。

3 互不固溶金属离子束混合合金化和固态反应非晶化

离子束混合[79](ion-beam mixing,IBM)技术是一种亚稳相制备方法,是一种将离子束与薄膜技术结合起来的实现二元互不固溶金属合金化的技术。具体过程为:使用离子束(通常是惰性气体离子)轰击交替沉积的二元互不固溶金属薄膜,轰击过程中离子束与膜中的金属原子碰撞,膜层与膜层之间的原子可以通过这种碰撞实现相互混合,产生扩散的效果。由于离子束的射程设计成与薄膜整体厚度一致,从而在薄膜中形成成分均匀的合金相。由于这种合金相通常为非晶相,薄膜在离子束混合作用下内部实际发生了固态非晶化反应(solid state amorphization reaction,SSAR),如图3所示。

图3

图3   离子束混合示意图

Fig.3   Schematic diagram of ion beam mixing


自20世纪90年代以来,清华大学柳百新研究组采用离子束混合技术成功地在多个二元互不固溶金属体系中实现了固态非晶化反应,如Cu/Ta[80,81]、Cu/Nb[82,83]、Cu/W[84]、Cu/Mo[85,86]、Cu/Co[87]、Ag/Mo[88,89]、Ag/Ni[90]、Ag/W[91]体系等。该课题组还通过设计不同原子比例、不同界面数量的多层纳米薄膜结构和精确控制不同的辐照剂量,揭示了二元互不固溶金属体系合金化时的材料显微组织形成与演化过程。以Mo/Ag体系为例,Tai等[88]首先采用电子束加热的方法制备了Ag12Mo88多层膜试样,然后以Xe+作为注入离子对该多层膜试样进行辐照。在注入能量为200 keV、注入剂量为1×1015 Xe+/cm2的条件下获得了3个结构不同的区域,即Mo/Ag纯晶态相区、晶态相和非晶相共存区、纯非晶相区。

在分析二元互不固溶金属固态反应非晶化的热力学机制时,柳百新研究组考虑了多层膜中曾被忽略的界面能的重要作用,并根据改进的Miedema模型和Alonso理论对界面能和非晶相自由能曲线进行了计算。根据计算结果,构建了多个二元互不固溶金属的自由能曲线图[76,78,80,82,84]。对自由能曲线图分析可知,界面能随界面数量(单界面层的原子数与总原子数之比)的增加而增加,且界面能可提高多层膜的初始能态,使呈直线状的初始自由能曲线与呈凸形的非晶相自由能曲线相交割。此时,多层膜的初始能态曲线在合金成分某一中央区域仍低于非晶相自由能曲线;而在另两侧区域已高于非晶相自由能曲线。如果进一步提高界面数量,有可能使初始能态在等原子比附近也高于非晶相,这样固态非晶化反应将会在整个合金成分范围内发生。因此认为,是多层膜的界面能为二元互不固溶金属的合金化提供了热力学驱动力,其中离子束混合过程起到了触发界面能释放的作用[88]

为分析二元互不固溶金属体系合金化时的非晶形成能力、显微组织形成和演化过程,Gong等[80,82,84]对二元互不固溶金属合金体系进行了分子动力学模拟。以Mo/Ag体系为例,Tai等[88]首先构建了不同原子比例的Mo/Ag固溶体初始模型,然后再利用第一性原理计算辅助构建了Mo/Ag体系的扩展型Finnis-Sinclair多体势,并利用此势函数,对Mo/Ag固溶体初始模型进行离子束混合过程的分子动力学模拟。通过对模拟结果的径向分布函数和相关函数的分析可知,当Mo原子浓度为10%~88%时,固溶体模型不再维持初始的晶体结构,转变成一种无序状态,说明在此合金组成范围内的模拟过程发生了Mo/Ag固溶体向非晶相的转变。同时可以得出Mo/Ag体系非晶形成范围为(10%~88%)Mo,这与离子束混合实验得到的结果吻合。利用以上相同的分析方法得到了W/Cu[84]、Mo/Cu[86]、W/Ag[91]体系的非晶形成范围分别为(20%~65%)W、(25%~50%)Mo、(20%~80%)W。

综上所述,二元互不固溶金属的直接合金化是可行的,机械球磨、大塑性变形、物理气相沉积、离子束混合等方法已经被用于实现二元互不固溶金属的合金化。合金化过程中的显微组织演化、热力学机制和所获材料的力/电性能都得到深入的研究,研究手段包括TEM等各类测试表征方法、热力学计算和多尺度计算机模拟(分子动力学、第一性原理)等方法。但合金化所获合金相的高温稳定性(即相分离)研究比较少,合金化显微机制仍有不确定的地方,这均需要进一步开展研究。

近年来,由于航天、核聚变和电子封装等领域的需求,本文作者研究组也开展了一系列二元互不固溶金属合金化的研究,提出了几种新型的合金化方法,制备出了相应的层状复合材料和连接件,下文对这几种合金化方法进行介绍。

4 互不固溶金属辐照损伤合金化

4.1 辐照损伤合金化的方法

离子注入技术被广泛地应用在航天航空、机械制造、半导体和电子通讯等领域,主要用于材料表面和内部掺杂改性[92,93,94,95]。事实上,离子注入到基体材料后不仅可以引入新的元素,还会引发辐照损伤[96,97,98,99],在基体材料表面产生大量的缺陷,包括空位、位错和晶格畸变等,同时造成缺陷周围的原子处于高能状态。显然,辐照损伤结构有可能为金属原子的相互扩散提供扩散通道。同时,辐照损伤造成的原子处于高能态有可能为扩散提供热力学驱动力。因此,可以考虑采用辐照损伤来诱发互不固溶金属合金化。

基于以上分析,本研究组[100]提出了利用辐照损伤来诱发W/Ag、Mo/Ag和Mo/Cu等互不固溶金属体系合金化并制备相应的互不固溶金属层状复合材料,合金化方法及工艺流程如图4[100]所示。从图4可以看出,辐照损伤合金化方法主要包括3个步骤:首先,利用离子注入技术在W、Mo等基体材料表面产生辐照损伤;然后,在经过辐照损伤的基体表面蒸镀或直接叠加第2种金属(Ag或Cu金属);最后,将获得的双层金属试样在保护气氛下进行高温退火处理。退火结束后,二元互不固溶金属的合金化结束。

图4

图4   辐照损伤诱发互不固溶金属合金化并制备W/Ag、Mo/Ag和Mo/Cu层状复合材料的工艺流程[100]

Fig.4   Preparation process of the immiscible W/Ag, Mo/Ag and Mo/Cu laminated metal composites (LMCs) by irradiation damage alloying (IDA)[100]

Color online


利用辐照损伤合金化方法,本研究组成功地制备了W/Ag[100]、Mo/Ag[10,101]和Mo/Cu[102]层状复合材料。通过对层状复合材料截面的TEM和元素成分线扫描分析发现(如图5~7[100,101,102]所示),W/Ag,Mo/Ag和Mo/Cu体系中的元素均呈梯度分布,意味着互不固溶的金属原子之间发生了扩散,扩散层厚度分别为16、79和12 nm。上述扩散的发生表明互不固溶金属成功地实现了直接合金化,构建出了冶金结合界面。

图5

图5   W/Ag层状复合材料截面的EDX线扫描结果[100]

Fig.5   EDX line-scanning results of the cross-section of the W/Ag LMCs[100]

Color online

(a) drift corrected spectrum profile (b) EDX line-scanning profile along the red-line in Fig.5a


拉伸强度测试结果证明,采用辐照损伤合金化制备的互不固溶金属层状复合材料具有良好的力学性能,其中W/Ag、Mo/Ag和Mo/Cu层状复合材料的拉伸强度分别达到107 MPa[103]、150 MPa[10]和87 MPa[102]。本研究组[101]认为,互不固溶金属层状复合材料具有高强度的根本原因在于:辐照损伤合金化方法能够诱导互不固溶金属元素的相互扩散,实现互不固溶金属直接合金化,并构建出了真正的冶金结合界面。

4.2 辐照损伤合金化所构建界面的显微组织

对二元互不固溶金属合金化界面的显微组织进行了高分辨透射电镜(HRTEM)观察和选区电子衍射(SAED)分析[10,100,101]。由于金属性质差异较大,HRTEM试样采用聚焦离子束(FIB)技术制备。HRTEM和SAED结果(图8~10[100,101])显示,辐照合金化所构建的二元互不固溶金属合金化界面有3类:非晶相界面、非晶和晶相共存界面、纯晶相界面。

图7

图7   Mo/Cu层状复合材料截面的EDX线扫描结果[100,102]

Fig.7   EDX line-scanning results of the cross-section of the Mo/Cu LMCs[100,102]

Color online

(a) drift corrected spectrum profile (b) EDX line-scanning profile along the red-line in Fig.7a


图8

图8   W/Ag层状复合材料的界面结构[100]

Fig.8   Microscopic characterization for the interface of the W/Ag LMCs[100]

(a) HRTEM image (b) corresponding SAED pattern


8,9,10的HRTEM和SAED结果显示:W/Ag合金化界面基本由W/Ag非晶相组成;Mo/Ag合金化界面Mo/Ag非晶相和Ag晶相共存;Mo/Cu合金化界面由Mo晶相和Cu晶相组成,Mo晶相和Cu晶相之间形成了连续晶格,同时Mo和Cu的晶格发生了畸变,这是由于Mo和Cu扩散及残余应力造成的。本研究组认为,辐照损伤合金化所构建的互不固溶金属合金化界面之所以有3种类型是由于辐照损伤在W和Mo基体金属中产生的储藏能不一样[100],这就涉及到互不固溶金属辐照损伤合金化的热力学机制研究。

图9

图9   Mo/Ag层状复合材料的界面结构[100,101]

Fig.9   Microscopic characterization for the interface of the Mo/Ag LMCs[100,101]

(a) HRTEM image (b) corresponding SAED pattern


图10

图10   Mo/Cu 层状复合材料的界面结构[100]

Fig.10   Microscopic characterization for the interface of the Mo/Cu LMCs[100]

(a) HRTEM image (b) corresponding SAED pattern


4.3 辐照损伤合金化的热力学机制

为分析辐照损伤合金化的热力学机制,确定辐照损伤合金化热力学驱动力的来源及对正生成热的克服,本研究组建立了辐照损伤合金化过程热力学模型[100],如式(1)所示:

ΔGinitial=ΔGbulk(A,B)+Eids+EsurΔGalloying=ΔGA/B+ΔGint

根据该模型,互不固溶金属体系实现合金化需要的自由能(ΔGalloying)包括原子扩散导致的自由能改变(ΔGA/BAB分别代表互不固溶的2种金属)和冶金结合界面形成的自由能改变(ΔGint)。对于互不固溶金属体系,所计算的ΔGalloying通常大于0。合金化开始之前,体系的初始自由能(ΔGinitial)包括体系组元金属混合导致的机械混合自由能(ΔGbulk(A,B),对于互不固溶金属该项为0)、辐照损伤在W和Mo等基体金属中产生的储藏能(Eids)和组元金属的表面能(Esur)。如果ΔGinitialGalloying,那就意味着互不固溶金属正生成热得到克服,合金化可以发生,此时ΔGinitial和ΔGalloying的差值即为二元互不固溶金属合金化的热力学驱动力。对于上述模型所涉及的几个热力学参量,采用差热扫描分析(DSC)方法测量了Eids,其它参量则采用Miedema模型和Alonso理论进行计算。

结果显示,EidsEsur可以保证ΔGinitialGalloying,换句话说,EidsEsur可以为二元互不固溶金属合金化提供热力学驱动力。显然,为使辐照损伤合金化过程能够顺利地启动并进行,EidsEsur应充分参与合金化过程,因此在整个合金化过程需要在保护气氛下进行,保证组元金属不被污染或氧化[100]

此外,本研究组提出的辐照损伤合金化是借助离子注入技术来产生辐照损伤[69,70,71],由于离子注入过程使基体材料(W、Mo)表面产生大量的空位、间隙原子和位错,这将导致原子的排列非常混乱,同时这种混乱的原子排列会储存一定的能量,这就是辐照损伤结构的储藏能。显然,Eids的大小将反映经过辐照损伤之后原子排列的有序程度,Eids越大代表着基体原子的排列越混乱。最后,合金化是在经过辐照损伤的基体材料(W、Mo)上进行,由于新相具有母相的遗传特性[88],因此认为Eids对扩散界面的相组成具有决定作用,Eids越大界面中的非晶相比例越高,这也是前文辐照损伤构建的合金化界面有3种类型的原因。

4.4 互不固溶金属辐照损伤合金化的扩散机制

本研究组对互不固溶金属辐照损伤合金化过程中的扩散机制进行了研究[101],主要是采用正电子湮没(VEPAS)实验来进行,研究对象为Mo/Ag二元互不固溶金属体系。研究首先对经过辐照损伤的Mo和预退火的纯Mo进行了VEPAS测试,从而确认Mo的辐照损伤情况。由于纯Mo是冷轧制得的,对其进行高温预退火后,可认为其内部是不存在缺陷的,把预退火的纯Mo作为对照参考,可通过对比2种材料的S参数曲线得到Mo的辐照损伤情况。S参数是VEPAS测试标志性结果,能反应缺陷的浓度。图11a[101]为预退火纯Mo (pre-annealed pure Mo)和辐照损伤Mo (ion implantation damaged Mo)试样的VEPAS测试结果。由S曲线可以得知,通过辐照损伤在Mo基体中产生了大量的点缺陷(主要是空位),集中分布在Mo表面下50 nm的深度。

图11

图11   预退火的纯Mo和经过Ag离子注入的Mo的S参数比较、Mo/Ag层状金属基复合材料在不同温度退火的S参数和S/SB参数[101] (S为Doppler展宽谱的线性参数,SB为被归一化为无缺陷样品的S值)

Fig.11   Variable energy positron annihilation spectroscopy (VEPAS) results of various samples[101] (S is the line shape parameter of Doppler broadening data, SB is the parameter that is normalized to the defect-free S value)(a) S parameter vs positron implantation energy for the pre-annealed pure Mo and the Ag+ implanted Mo

(b) S parameter vs positron implantation energy for the pre-annealed pure Mo and the Mo/Ag laminated samples with a 100 nm thick Ag layer annealed at different temperatures


其次,还将Mo/Ag双层金属(辐照损伤Mo基体/表层)试样在不同温度(300、400、500、600、700、800和900 ℃)下加热相同时间(即在不同温度下进行合金化相同时间),随后进行VEPAS测试,所获曲线见图11b[101]S参数峰值和对应的材料深度如表1[101]所示。根据表1所示,当温度从300 ℃升高到700 ℃时,S参数峰值对应的深度从155 nm减小到78 nm。由于Mo/Ag双层金属Ag表面层厚度仅为100 nm,这就意味着155和78 nm的峰值深度分别位于Mo和Ag层。由此可以推出,合金化过程中辐照损伤形成的点缺陷由Mo层向Ag表层发生迁移,迁移距离大约为77 nm (155-78=77 nm),这与图6[100,101]所示Mo/Ag合金化形成的扩散层厚度(79 nm)非常接近。也就是说,Mo中辐照损伤产生的点缺陷(主要是空位)与表层的Ag原子发生了“反向等距”的移动,这进一步可以推断出互不固溶金属辐照损伤合金化法的扩散机制为空位扩散机制(vacancy-assisted mechanism)。

表1   Mo/Ag双层金属在不同温度下合金化相同时间后的VEPAS测试S参数峰值和峰值相应深度[101]

Table 1  S parameter values and corresponding depth of the S peak for the Mo/Ag laminated samples annealed at different temperatures[101]

Annealing temperature / ℃S parameter value of S peakDepth / nm
3000.4635155
4000.4657119
5000.4622119
6000.4604108
7000.450178

新窗口打开| 下载CSV


图6

图6   Mo/Ag层状复合材料截面的EDX线扫描结果[100,101]

Fig.6   EDX line-scanning results of the cross-section of the Mo/Ag LMCs[100,101]

Color online

(a) drift corrected spectrum profile (b) EDX line-scanning profile along the red-line in Fig.6a


本研究组还对800 ℃退火4 h的Mo/Ag层状复合材料进行了TEM观察,结果见图12a[101]图12b[101]图12a中白色矩形区域的放大图,可以清晰地观察到在Ag层和Mo/Ag扩散层中存在大量直径为20~30 nm的孔洞,而在经过辐照损伤的基体Mo中却并未发现。显然,这是一种Kirkendall效应[104,105,106],孔洞为Kirkendall孔洞,其形成过程见图13[101]所示。Kirkendall效应的发现进一步佐证了互不固溶金属辐照损伤合金化法的扩散机制为空位扩散机制。

图12

图12   Mo/Ag层状复合材料截面的TEM像[101]

Fig.12   Cross-section TEM image for the Mo/Ag laminated sample annealed at 800 ℃ for 4 h (a) and the magnified image of the region marked with a white rectangular frame in Fig.12a (b)[101]


图13

图13   Mo/Ag层状试样中的Kirkendall孔洞形成过程[101]

Fig.13   Schematic view of the forming process of the Kirkendall voids in the Mo/Ag laminated sample[101] (IIPDs—irradiation-induced point defects )

Color online


综上所述,离子注入在材料中产生的辐照损伤可以用来诱发二元互不固溶金属发生合金化,构建高强度的冶金结合界面,其微观扩散机制为空位扩散机制。这个机制是通过正电子湮灭实验结果获得的,直接从原子尺度进行观察(如球差校正透射电镜、原位透射电镜)以及计算机模拟(如分子动力学模拟)仍未实现。另外,对合金化所获相的稳定性研究较少,这些都需要开展研究。辐照损伤合金化适合于二元互不固溶金属基层状复合材料的制备以及棒状材料的连接,对于整块和粉体的二元互不固溶金属合金的制备是不适合的。

5 高温结构诱发互不固溶金属合金化

5.1 高温结构诱发合金化的方法

除了辐照损伤诱发二元互不固溶金属合金化的方法之外,本研究组还提出利用二元互不固溶金属体系中低熔点组元金属的高温结构来诱发互不固溶金属合金化的方法[107,108,109]

高温结构诱发合金化方法主要包括以下3个步骤:首先,将块/棒金属的接触面进行打磨、去油、刻蚀前处理;其次,将经过前处理的块/棒状金属的接触面进行匹配,并在夹具上固定、加压;最后,将预连接的试样在(0.90~0.97)Tm (其中Tm为二元互不溶金属体系中低熔点金属的熔点)之间的某一个温度下进行H2保护氛围下的加热退火,退火过程中金属接触面上发生合金化形成冶金界面。退火结束后互不固溶金属被连接/复合在一起,获得了相应的连接件/复合材料。

利用高温结构诱发合金化的方法,Pan等[107]制备了互不固溶Nb/Cu金属连接件,如图14[107]所示。Zhang等[108]制备了互不固溶W/Cu金属连接件。机械性能测试结果表明,Nb/Cu和W/Cu连接件的最大拉伸强度分别为222和172 MPa,最大弯曲强度分别为48和232 MPa,均达到了较高的水平。此外,SEM观测结果表明,连接件拉伸断口有大量尺寸各异的韧窝存在,意味着连接件拉伸破坏为塑性断裂。通过对Nb/Cu和W/Cu界面进行TEM和成分线扫描分析发现,在2种连接件中,Nb和W均扩散进入了Cu中,扩散层厚度分别为36和22 nm,这说明高温结构确实能诱发互不固溶金属合金化,构建真正的冶金结合界面,实现Nb/Cu和W/Cu金属的高强度连接和复合。此外,Zhang等[108]还采用该方法制备了W/Cu粉末冶金烧结材料。

图14

图14   高温结构诱发合金化(HTSIA)制备Nb/Cu棒状复合材料的工艺流程[107]

Fig.14   Preparation process of the Nb/Cu joint by high-temperature structure induced alloying (HTSIA)[107] (F—force)


5.2 高温结构诱发合金化所构建界面的显微组织

在二元互不固溶金属体系中,由高温结构诱发合金化方法构建的冶金结合界面的显微组织也有3种构成,包括完全由晶态相构成、晶态相和非晶相共同构成以及完全由非晶相构成。一般来讲,块体层状复合材料或棒状连接件的界面显微结构由晶态相组成,粉末冶金烧结材料的界面由晶态相和非晶相共同构成。

图15a和b[109]是退火温度为980 ℃、退火时间为3 h的W/Cu连接件界面的成分线扫描分析结果和W/Cu界面的HRTEM像,图15c[109]图15b中蓝色方框区域的去噪音放大图。可以清晰地观察到,W/Cu合金化界面由W和Cu晶态相组成。图16[109]是烧结温度为980 ℃,烧结时间3 h的W50Cu50粉末烧结材料的HRTEM和SAED分析结果。其中,图16a和b[109]对应的W50Cu50粉末冶金烧结材料在烧结前W和Cu金属粉末进行了30 h的球磨,图16c和d[109]为相应进行了40 h球磨的结果。可以得出,30 h球磨再在980 ℃进行烧结构建的W/Cu合金化界面由晶态相组成,40 h球磨再在980 ℃进行烧结构建的W/Cu合金化界面由非晶相和晶态相共同组成,非晶相比例较大。

图15

图15   W/Cu连接件界面显微结构的HRTEM观察结果[109]

Fig.15   HRTEM observation of the W/Cu interface of W/Cu joint prepared through the direct diffusion bonding[109]

Color online

(a) EDX line-scanning compositional profile

(b) HRTEM image at W/Cu interface

(c) filtered image of the region marked with blue rectangle in Fig.15b


图16

图16   球磨30和40 h后在980 ℃烧结3 h制备的W50Cu50粉末的HRTEM像和相应的SAED花样[109]

Fig.16   HRTEM images of microstructures of theW50Cu50 sintered powder metallurgy materials prepared by milling for 30 h (a) and 40 h (c) and subsequent sintering at 980 ℃ for 3 h, and the corresponding SAED patterns of Figs.16a and c (b, d)[109] (Insets in Figs.16a and c show the EDX results of W50Cu50 sintered powders)


以上结果的根本原因就是高温结构诱发合金化过程中材料储藏能和表面能的作用大小不同造成的,这就涉及到了互不固溶金属高温结构诱发合金化热力学机制的研究。

5.3 高温结构诱发互不固溶金属合金化的热力学机制

对于生成热为负的体系,自身的生成热就可以作为反应的热力学驱动力。而对于Nb/Cu和W/Cu这样典型的互不固溶金属体系,生成热为正,在平衡状态下由于缺少热力学驱动力很难实现原子的扩散以及合金化。高温结构能够诱发互不固溶金属实现直接合金化,显然是具备了足够的热力学驱动力,因此对高温结构诱发互不固溶金属合金化热力学机制的研究主要目的在于确定相关的热力学驱动力来源。

以Cu棒和Nb棒连接过程中界面上的合金化为例,Pan等[107]认为,要完成高温结构诱发互不固溶金属合金化需要2种能量:ΔGA/B (主要为ΔGNb/Cu)和ΔGint。如果此时Nb/Cu体系的ΔGinitial能够大于ΔGA/BGintGalloying,那么合金化就能发生,它们的差值就是合金化的热力学驱动力。而体系的ΔGinitial不仅有Cu棒和Nb棒中因轧制变形(所购Cu棒和Nb棒为轧制态)产生的储藏能,而且有Cu棒和Nb棒因外加压力引起变形所提供的弹性畸变能,这2种能量在高温下都能转换成自由能。

基于上述思路,Pan等[107]建立了Nb/Cu高温结构诱发合金化的热力学模型,如下式所示:

ΔGinitial=Es+PΔV+ΔGbulk(Cu,Nb)ΔGalloying=ΔGCu/Nb+ΔGint

式中,P为外部施加的压力,ΔV为由压力引起的体积变化。与前文所示的辐照损伤诱发合金化模型(式(1))一样,该模型中的Cu棒和Nb棒储藏能(Es)采用DSC测量,其它的热力学参量通过Miedema模型和Alonso进行计算。根据计算结果构建了Nb/Cu高温结构诱发合金化的自由能-成分曲线图,并由此确认了高温结构诱发Cu棒和Nb棒界面上的合金化的热力学驱动力源自于Es

这个热力学模型的问题在于忽略了高温结构诱发合金化构建的界面既有晶态相单独构成也有晶态相+非晶相共同构成的2种可能性,无法解释这2种可能性的热力学机制。为此,Zhang等[109]对该模型进行了改进,改进后的模型如式(3)和(4)所示。其中,式(3)对应界面上生成晶态相,式(4)对应界面上生成非晶相:

ΔGalloying=ΔGalloyingc=ΔGcryst+ΔGintEinitial=Estor+Esurf+Ep
ΔGalloying=ΔGalloyingaEinitial=Estor+Esurf+Ep

式中,ΔGalloyingc为合金化形成晶态相所需要的Gibbs自由能总值;ΔGcryst为形成晶态相的Gibbs自由能;ΔGint为互不固溶金属之间形成冶金界面的Gibbs自由能;Einitial为互不固溶金属体系的初始能量;Estor为原始材料中的储藏能;Esurf为棒状材料接触面或者粉末颗粒的表面能;Ep为由外界施加压力使材料发生变形产生的能量;ΔGalloyinga为合金化形成非晶相所需要的Gibbs自由能。

Zhang等[109]采用改进后的热力学模型对互不固溶W/Cu金属体系的合金化进行了研究,包括W/Cu棒状连接过程中的合金化以及W/Cu粉末冶金烧结过程中的合金化。该模型中的储藏能通过DSC测试获得,测试方法是将原始轧制态或经球磨后的材料与经过回复再结晶退火的材料进行DSC曲线对比,结果见图17[109]图18[109]。从图17[109]中可以看出,经过回复再结晶退火的W棒和Cu棒没有放热峰,而原始轧制态的W棒在300~480 ℃和580~640 ℃出现放热峰,峰面积代表的能量值分别为3.07和11.67 kJ/mol,Cu棒的放热峰温度区间为780~980 ℃,峰面积代表的能量值为9.58 kJ/mol。从图18[109]可见,球磨40 h获得的W50Cu50混合粉末的放热峰出现在650~770 ℃,峰面积代表的能量值约为4.07 kJ/mol。模型中其它的热力学参量仍然是通过Miedema理论和Alonso模型进行计算,所计算的W-Cu体系高温结构诱发合金化过程中的Gibbs自由能变化曲线见图19[109]所示。从图19[109]可以看出,ΔGalloyingcΔGalloyinga全部成分范围内均大于0,说明体系在自然条件下无热力学驱动力,不易形成合金相。在相同的成分下,ΔGalloyinga始终大于ΔGalloyingc,W/Cu非晶相比晶态相更难形成。另外,当体系处于正常条件下,由于晶态相的能量更低,高温结构诱发合金化构建的W/Cu合金化界面最终应该以更稳定的晶态相形式存在。

图17

图17   原始轧制态和退火后的W棒和Cu棒的DSC曲线[109]

Fig.17   DSC curves of the original and annealed W and Cu rods[109]


图18

图18   W50Cu50球磨粉末烧结前后的DSC曲线[109]

Fig.18   DSC curves of the 40 h milled W50Cu50 powder mixture before and after being annealed[109]


图19

图19   W-Cu体系高温结构诱发合金化过程中的Gibbs自由能变化曲线[109]

Fig.19   Calculated curves of Gibbs free energy change for the alloying in W-Cu system[109](Einitial—total initial energy of W-Cu system, ΔGalloying—Gibbs energy for the alloying between W and Cu, ΔGalloyingc—Gibbs energy for the formation of W/Cu crystalline phases, ΔGalloyinga—Gibbs energy for the formation of W/Cu amorphous phases)


对于W/Cu棒状连接过程中的合金化[109],通过计算可得,W-Cu棒状体系的Esurf为1.01 kJ/mol,Ep为0.3 kJ/mol。根据图19[109],结合图18[109]所示的DSC测试结果可以得出,当温度为880 ℃时,原始Cu棒内的储藏能部分释放,释放能量值为4.07 kJ/mol,Einitial为20.72 kJ/mol。此时,在全成分范围内体系提供的总能量略高于ΔGalloyingc的最大值,W/Cu冶金结合刚刚能够在全成分范围内发生,形成晶态相。当温度继续升高至980 ℃时,原始Cu棒内的储藏能全部释放,Einitial为25.63 kJ/mol,远高于ΔGalloyingc,即在全成分范围内体系可提供足够的合金化热力学驱动力,生成晶态相。由于压力能和表面能很小,显然这个热力学驱动力主要来自储藏能。另外,根据图19[109]可以得到,这个能量在Cu含量低于21.1%和Cu含量大于77.5%的成分范围内大于ΔGalloyingc,这意味着固态非晶化反应可以小范围发生,但由于非晶相要向更为稳定的晶态相转变,小范围产生的非晶相在棒状材料合金化界面上很难保留下来。

对于W/Cu粉末冶金烧结过程中的合金化[109],由于无外界施加压力,即σZ为0,因此Ep为0。结合W和Cu粉末的直径,计算出W-Cu粉末体系的Esurf为36.61 kJ/mol。由图18[109]所示,W-Cu粉末体系中Estor为4.07 kJ/mol。因此,体系的Einitial为40.68 kJ/mol,高于ΔGalloyinga (36.51 kJ/mol),即可以提供足够的热力学驱动力使得W/Cu体系合金化并在全成分范围内发生固态非晶化反应形成W/Cu非晶相。由于EpEstor较小,显然这个热力学驱动力主要来自于W金属粉末和Cu金属粉末的Esurf。另外,根据图19[109],由于W/Cu晶态相的能量更低,在合金化结束后的冷却过程中W/Cu非晶相会转变成更稳定的晶态相。不过由于实验采用较快的的冷却速率(10 ℃/min)[109],大于随炉冷却速率(1~2 ℃/min),导致大范围形成的非晶相转变不完全,冷却到室温后W/Cu界面上非晶相部分保留,最终得到合金化界面上W/Cu非晶相与晶态相共存的W/Cu粉末冶金烧结材料。

5.4 高温结构诱发互不固溶金属合金化的扩散机制

正如前文所述,高温结构诱发合金化的温度一般选择(0.90~0.97)Tm,在这个温度下金属体系中低熔点组元金属的结构不同于室温下的结构,比如Cu在室温下为fcc结构,而在接近其熔点的温度下为fcc、bcc、六方和无定形等结构共存[110,111,112],同时还有大量位错生成,这些都有可能诱发金属体系中的高熔点金属向低熔点金属中扩散、克服互不固溶性实现体系组元之间的合金化。但这方面的研究进展不明显,缺乏原子尺度的研究成果,比如高温结构诱发合金化的原位透射电镜观察、球差校正透射电镜观察以及计算模拟等,扩散机制仍处于猜测阶段。不过互不固溶金属相互扩散的计算机模拟工作还是有一些开展,比如Nb/Cu[83]、Ta/Cu[113,114]和Cu/Ag[115,116]等二元互不固溶金属体系扩散的分子动力学模拟,但这些往往都是一些纯模拟工作,没有做到与实验之间的相互验证。

综上所述,利用二元互不固溶金属体系中低熔点金属在(0.90~0.97)Tm范围内的高温结构来诱发体系金属的扩散,克服互不固溶性是可行的。这一方面是由于在近熔点高温时储藏能可以得到足够释放;另一方面是由于低熔点金属的高温结构能提供扩散通道。对于金属棒状连接时的界面合金化,金属棒材的储藏能为合金化热力学驱动力来源;对于金属粉末烧结时的界面合金化,金属粉末的表面能为合金化热力学驱动力的来源。高温结构诱发合金化不仅适合于二元互不固溶金属的棒状连接和层状复合,也适合于通过粉末冶金烧结制备块体材料。目前存在的问题主要有:(1) 扩散机制需要从原子尺度开展进一步研究;(2) 制备出具有完全冶金结合界面的互不固溶金属粉末烧结材料仍比较困难;(3) 所获合金相稳定性(即长期相分离特性)没有系统研究等。

6 总结与展望

基于二元互不固溶金属体系的合金、复合材料以及薄膜等材料在航天飞行器、核聚变堆和电子封装等领域有着广泛而重要的应用,但由于正的反应热,二元互不固溶金属的直接合金化非常困难。本文介绍了二元互不固溶金属直接合金化方法的研究现状,包括适用于制备二元互不固溶金属粉末合金和纳米多层膜材料的机械合金化、物理气相沉积和离子束混合3种典型的非平衡工艺过程。除此之外,还对本研究组提出并发展的二元互不固溶金属新型合金化方法进行了详细阐述,包括辐照损伤合金化、高温结构诱发合金化等新方法。主要内容包括上述合金化方法的基本原理和工艺过程,所得合金化界面及所制备材料的显微结构表征,合金化的热力学机制和扩散机制等。

根据已有研究成果可以总结出:(1) 目前已发展出的这些二元互不固溶金属合金化方法能够克服组成元素之间的互不固溶性,实现原子间的相互扩散,建立真正的冶金结合界面,实现合金化。基于这些合金化方法所制备的材料具有良好的力学和电学性能,可以满足国民经济和科技多个领域的需求;(2) 这些合金化方法具有各自的适用性。其中,机械合金化、物理气相沉积和离子束混合可用于粉末合金、块体金属和薄膜的制备;辐照损伤合金化二元互不固溶金属基层状复合材料的制备以及棒状材料的连接,对于整块和粉体的二元互不固溶金属合金的制备是不适合的;高温结构诱发合金化则不仅适合于二元互不固溶金属的棒状连接和层状复合,也适合于通过粉末冶金烧结制备块体材料;(3) 上述合金化方法中离子束混合、辐照损伤合金化和高温结构诱发合金化的热力学机制得到了深入研究,相关研究基本都是通过Miedema模型和Alonso理论建立的热力学模型进行的,通过该研究最终弄清楚了离子束混合、辐照损伤合金化和高温结构诱发合金化的热力学机制,确定离子束混合合金化的热力学驱动力为界面能,辐照损伤合金化和高温结构诱发合金化的热力学驱动力为储藏能和表面能;(4) 上述合金化方法中,辐照损伤合金化扩散机制可以初步确定为空位辅助扩散机制占据主导地位;高温结构诱发合金化方法的扩散机制初步推测为利用体系低熔点金属组元在近熔点温度范围的特殊结构诱发原子扩散,而具体的扩散机制和路径还需要进一步探索分析。

上述合金化方法存在的问题主要有:(1) 扩散机制需要从原子尺度开展进一步研究;(2) 制备基于互不固溶金属体系的各类材料仍比较困难;(3) 合金化所获合金相稳定性(即长期相分离特性)没有系统研究等。这些仍需要进一步开展工作,采用表征与模拟的手段相结合的方法进行,比如原位透射电镜观察、球差校正透射电镜观察以及计算模拟相结合研究扩散机制等。

参考文献

Ma E.

Alloys created between immiscible elements

[J]. Prog. Mater. Sci., 2005, 50: 413

DOI      URL     [本文引用: 1]

Lu G H, Zhou H B, Becquart C S.

A review of modelling and simulation of hydrogen behaviour in tungsten at different scales

[J]. Nucl. Fusion, 2014, 54: 086001

DOI      URL     [本文引用: 1]

Philipps V.

Tungsten as material for plasma-facing components in fusion devices

[J]. J. Nucl. Mater., 2011, 415: S2

[本文引用: 1]

Chen W G, Dong L L, Zhang H, et al.

Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique

[J]. Mater. Lett., 2017, 205: 198

DOI      URL     [本文引用: 1]

Wang F T, Wu Y C, Wang T G, et al.

Fabrication and properties of the W-Cu gradient heat sink materials for plasma facing materials

[J]. Acta Mater. Comp. Sin., 2008, 25(2): 25

[本文引用: 1]

汪峰涛, 吴玉程, 王涂根.

W-Cu面对等离子体梯度热沉材料的制备和性能

[J]. 复合材料学报, 2008, 25(2): 25

URL     [本文引用: 1]

采用粉末冶金法制备了 W2Cu面对等离子体梯度热沉材料。对其显微组织、 界面以及重要的热学、 力学性能进行了研究。显微组织观察表明 : 截面成分呈梯度分布 , 并通过高温下元素的扩散 , 实现了组织的连续变化 , 层间没有明显界面 ; 烧结后 Cu形成了连续的网络结构 , 分布在 W颗粒周围。W2Cu梯度材料的化学元素分- 1布和热学、 力学性能沿厚度方向呈梯度变化 , 材料整体的热导率达 151. 4 W&middot;(m&middot;K) 。在 800 ℃ 温差条件下 ,对材料分别进行抗热震和耐热疲劳实验。热震实验后 , 界面处未发现裂纹和开裂现象 , 表现出良好的抗热震性能。经过 83次热循环冲击后 , 观察到了裂缝 , 并探讨了裂缝形成机制。

Shikov A, Pantsyrnyi V, Vorobieva A, et al.

High strength, high conductivity Cu-Nb based conductors with nanoscaled microstructure

[J]. Physica, 2001, 354C: 410

[本文引用: 1]

Yano S, Matsui H, Morozumi S.

Structural observations of the interface of explosion-bonded Mo/Cu system

[J]. J. Mater. Sci., 1998, 33: 4857

DOI      URL     [本文引用: 1]

Yoshida N.

Review of recent works in development and evaluation of high-Z plasma facing materials

[J]. J. Nucl. Mater., 1999, 266-269: 197

DOI      URL     [本文引用: 1]

Taghavi Pourian Azar G, Rezaie H R, Gohari B, et al.

Synthesis and densification of W-Cu, W-Cu-Ag and W-Ag composite powders via a chemical precipitation method

[J]. J. Alloys Compd., 2013, 574: 432

DOI      URL     [本文引用: 1]

Huang Y, Kong D Y, He F, et al.

Preparation of Mo/Ag laminar composites by using irradiation damage alloying method

[J]. Acta Metall. Sin., 2012, 48: 1253

DOI      URL     [本文引用: 4]

The preparation of laminar metal matrix composites for immiscible alloy systems was difficult due to the positive formation heat and diffusion difficulty between each other, resulting in no metallurgy combination forming on interfaces. Aiming at this situation, a new irradiation damage alloying method for immiscible and not reacting alloy systems was presented in this work, through irradiation damages were produced by an ion implantation technology in the matrix metal first, and then the metal in the surface layer diffused into the matrix metal through the irradiation damages to form metallurgy combination with the metal. The key of this kind of metallurgy combination is to form amorphous alloy phase in the diffusion layer. By alloying the high-performance Mo/Ag laminar metal matrix composites used in spacecraft were prepared, whose maxium resistance spot welding joint tensile strength reaches 150 MPa, the average 130 MPa. The properties of thees composites exceed the national military standards and the technical requirements specified by astronic users.

黄 远, 孔德月, 何 芳.

辐照损伤合金化制备Mo/Ag层状复合材料

[J]. 金属学报, 2012, 48: 1253

DOI      URL     [本文引用: 4]

本工作提出一种新的辐照损伤合金化方法, 首先采用离子注入技术将离子束注入金属, 使其产生包括空位在内的辐照损伤, 然后利用辐照损伤来诱发互不固溶金属之间的扩散和合金化, 从而实现金属界面之间的冶金结合. 扩散层中形成的非晶合金相是形成冶金结合的关键. 基于该辐照损伤合金化机制, 制备出了高性能的空间飞行器太阳能电池阵互连片用Mo/Ag层状复合材料,这种材料与空间GaAs电池片的单点电阻点焊拉伸强度最高达到了150 MPa, 平均为130 MPa, 超过了国家军用标准和航天用户提出的指标要求.

Findik F, Uzun H.

Microstructure, hardness and electrical properties of silver-based refractory contact materials

[J]. Mater. Des., 2003, 24: 489

DOI      URL     [本文引用: 1]

Wu F, Bellon P, Melmed A J, et al.

Forced mixing and nanoscale decomposition in ball-milled Cu-Ag characterized by APFIM

[J]. Acta Mater., 2001, 49: 453

DOI      URL     [本文引用: 1]

AbstractAg50Cu50 alloys are prepared by high energy ball milling at different controlled temperatures, 85 K, 315 K and 453 K, with milling times long enough to reach steady-state. Atom probe field ion microscopy (APFIM) is used to characterize the atomic mixing forced by low temperature milling and to study the nanocomposite materials stabilized by elevated temperature milling. A new method is devised that makes it possible to prepare sharp tips from ball-milled powders. Statistical analysis of the APFIM composition profiles is used to determine the degree of mixing as a function of the length scale. These results are compared with the ones obtained from kinetic Monte Carlo simulations. Cryo-milling results in nearly random mixing of copper and silver, whereas the mixing achieved by milling at 315 K is calculated to be around 70%. 453 K milling results in the decomposition into copper-rich and silver-rich regions at a scale of ≈25 nm.]]>

Xi S Q, Zuo K S, Li X G, et al.

Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr(Mo)

[J]. Acta Mater., 2008, 56: 6050

DOI      URL     [本文引用: 3]

AbstractThis paper presents the extension of the solid solubility of Mo in Cu by a mechanical alloying technique. Two binary systems, Cu–10 wt.% Mo and Cr–50 wt.% Mo, and one ternary system, Cu–20 wt.% Cr(Mo), are investigated. The solid solubility of Mo in Cu has been shown to be less than 4.3 at.% when the Cu–Mo system is mechanically alloyed, whereas when the Cr–Mo system is mechanically alloyed all of Mo dissolves into Cr, forming an amorphous Cr(Mo). Similarly, all of 10 wt.% Mo dissolve into Cu when Cu–20 wt.% amorphous Cr(Mo) is mechanically alloyed. Based on Miedema’s model, the Gibbs free-energy changes in these three alloy systems during the formation of solid solutions are calculated to be positive, which means that thermodynamic barriers exist for the formation of these three alloy systems in solid solution states. The mechanism of solid solubility extension in these mechanical alloyed systems is discussed. The conclusion is that the extension of solid solubility is favoured by adding a third element, such as Cr, to the Cu–Mo system.]]>

Al-Aqeeli N, Hussein M A, Suryanarayana C.

Phase evolution during high energy ball milling of immiscible Nb-Zr alloys

[J]. Adv. Powder Technol., 2015, 26: 385

DOI      URL     [本文引用: 1]

Martínez C, Ordoñez S, Serafini D, et al.

Study of the formation and thermal stability of Mg2Co obtained by mechanical alloying and heat treatment

[J]. J. Alloys Compd., 2014, 590: 469

DOI      URL     [本文引用: 1]

Musu E, Mura G, Ligios G, et al.

Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi

[J]. J. Alloys Compd., 2013, 576: 80

DOI      URL     [本文引用: 1]

Suryanarayana C.

Mechanical alloying and milling

[J]. Prog. Mater. Sci., 2001, 46: 1

DOI      URL     [本文引用: 1]

Selvakumar N, Vettivel S C.

Thermal, electrical and wear behavior of sintered Cu-W nanocomposite

[J]. Mater. Des., 2013, 46: 16

DOI      URL     [本文引用: 1]

Darling K A, Roberts A J, Mishin Y, et al.

Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum

[J]. J. Alloys Compd., 2013, 573: 142

DOI      URL     [本文引用: 2]

Rajagopalan M, Darling K, Turnage S, et al.

Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study

[J]. Mater. Des., 2017, 113: 178

DOI      URL     [本文引用: 1]

Ren F Z, Zhu W W, Chu K J, et al.

Tribological and corrosion behaviors of bulk Cu-W nanocomposites fabricated by mechanical alloying and warm pressing

[J]. J. Alloys Compd., 2016, 676: 164

DOI      URL     [本文引用: 1]

López J M, Alonso J A, Gallego L J.

Determination of the glass-forming concentration range in binary alloys from a semiempirical theory: Application to Zr-based alloys

[J]. Phys. Rev., 1987, 36B: 3716

[本文引用: 1]

Zuo K S, Xi S Q, Zhou J E.

Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system

[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1206

DOI      URL     [本文引用: 1]

Ran G, Zhou J E, Xi S Q, et al.

Study on phase transformation and thermodynamic and kinetic of Al-Pb powder during mechanical alloying

[J]. Heat Treat. Met., 2004, 29(7): 49

[本文引用: 1]

冉 广, 周敬恩, 席生岐.

机械合金化过程中Al-Pb相变的热力学和动力学研究

[J]. 金属热处理, 2004, 29(7): 49

[本文引用: 1]

Sheibani S, Heshmati-Manesh S, Ataie A.

Structural investigation on nano-crystalline Cu-Cr supersaturated solid solution prepared by mechanical alloying

[J]. J. Alloys Compd., 2010, 495: 59

DOI      URL     [本文引用: 1]

Wu Z F, Zhou F, Cheng Z.

Mechanical alloying of Ag-Cu nanocrystalline supersaturated solid solution

[J]. Powder Metall. Ind., 2015, 25(5): 13

[本文引用: 1]

吴志方, 周 帆, 程 钊.

机械合金化制备Ag-Cu纳米晶过饱和固溶体

[J]. 粉末冶金工业, 2015, 25(5): 13

[本文引用: 1]

Wu Z F, Zhou F.

Mechanical alloying of Co-Cu nano-crystalline supersaturated solid solution

[J]. China Powder Sci. Technol., 2015, 21(2): 64

[本文引用: 1]

吴志方, 周 帆.

机械合金化制备Co-Cu纳米晶过饱和固溶体

[J]. 中国粉体技术, 2015, 21(2): 64

[本文引用: 1]

Ma E, Sheng H W, He J H, et al.

Solid-state alloying in nanostructured binary systems with positive heat of mixing

[J]. Mater. Sci. Eng., 2000, A286: 48

[本文引用: 1]

Eckert J, Holzer J C, Krill III C E, et al.

Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders

[J]. J. Appl. Phys., 1993, 73: 2794

DOI      URL     [本文引用: 1]

Zhilyaev A P, Langdon T G.

Using high-pressure torsion for metal processing: Fundamentals and applications

[J]. Prog. Mater. Sci., 2008, 53: 893

DOI      URL     [本文引用: 1]

Toth L S, Gu C F.

Ultrafine-grain metals by severe plastic deformation

[J]. Mater. Charact., 2014, 92: 1

DOI      URL     [本文引用: 2]

Zhilyaev A P, Nurislamova G V, Kim B K, et al.

Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion

[J]. Acta Mater., 2003, 51: 753

DOI      URL     [本文引用: 1]

AbstractPure nickel was selected for a detailed investigation of the experimental parameters influencing grain refinement and microstructural evolution during processing by high-pressure torsion (HPT). Samples were examined after HPT using microhardness measurements, transmission electron microscopy and orientation imaging microscopy. Processing by HPT produces a grain size of ~170 nm in pure Ni, and homogeneous and equiaxed microstructures are attained throughout the samples when they are subjected to at least ~5 whole revolutions under applied pressures of at least ~6 GPa. For these conditions, the distributions of grain boundary misorientations are similar in the center and at the periphery of the samples. A simple model is proposed to explain the development of a homogeneous microstructure in HPT.]]>

Valiev R.

Nanostructuring of metals by severe plastic deformation for advanced properties

[J]. Nat. Mater., 2004, 3: 511

DOI      URL     [本文引用: 2]

Saito Y, Utsunomiya H, Tsuji N, et al.

Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process

[J]. Acta Mater., 1999, 47: 579

DOI      URL     [本文引用: 1]

Saito Y, Tsuji N, Utsunomiya H, et al.

Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process

[J]. Scr. Mater., 1998, 39: 1221

DOI      URL     [本文引用: 1]

Berbon P B, Furukawa M, Horita Z, et al.

Influence of pressing speed on microstructural development in equal-channel angular pressing

[J]. Metall. Mater. Trans., 1999, 30A: 1989

[本文引用: 1]

Straumal B B, Protasova S G, Mazilkin A A, et al.

SPD-induced changes of structure and magnetic properties in the Cu-Co alloys

[J]. Mater. Lett., 2013, 98: 217

DOI      URL     [本文引用: 1]

Gente C, Oehring M, Bormann R.

Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying

[J]. Phys. Rev., 1993, 48B: 13244

[本文引用: 1]

Wilde G, Rösner H.

Stability aspects of bulk nanostructured metals and composites

[J]. J. Mater. Sci., 2007, 42: 1772

DOI      URL     [本文引用: 1]

Sauvage X, Jessner P, Vurpillot F, et al.

Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation

[J]. Scr. Mater., 2008, 58: 1125

DOI      URL     [本文引用: 1]

Zhang Z L, Guo J M, Dehm G, et al.

In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys

[J]. Acta Mater., 2017, 138: 42

DOI      URL     [本文引用: 2]

Ekiz E H, Lach T G, Averback R S, et al.

Microstructural evolution of nanolayered Cu-Nb composites subjected to high-pressure torsion

[J]. Acta Mater., 2014, 72: 178

DOI      URL     [本文引用: 1]

Bulk nanolayered Cu/Nb composites fabricated by accumulative roll bonding (ARB), leading to a nominal layer thickness of 18 nm, were subjected to large shear deformation by high-pressure torsion at room temperature. The evolution of the microstructure was characterized using X-ray diffraction, transmission electron microscopy and atom probe tomography. At shear strains of the crystallographic texture started to change from the one stabilized by ARB, with a Kurdjumov-Sachs orientation relationship and a dominant {1 1 2}(Cu)parallel to{1 1 2}(Nb) interface plane, toward textures unlike the shear texture of monolithic Cu and Nb. At larger strains, exceeding 10, the initial layered structure was progressively replaced by a three-dimensional Cu-Nb nanocomposite. This structure remained stable with respect to grain size, morphology and global texture from strains of similar to 290 to the largest ones used in this study, 5900. The three-dimensional self-organized nanocomposites comprised biconnected Cu-rich and Nb-rich regions, with a remarkably small coexistence length scale, similar to 10 nm. The results are discussed in the context of the effect of severe plastic deformation and strain path on microstructure and texture stability in highly immiscible alloy systems. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd.

Wang M, Averback R S, Bellon P, et al.

Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation

[J]. Acta Mater., 2014, 62: 276

DOI      URL     [本文引用: 1]

Edwards D, Sabirov I, Sigle W, et al.

Microstructure and thermostability of a W-Cu nanocomposite produced via high-pressure torsion

[J]. Philos. Mag., 2012, 92: 4151

DOI      URL     [本文引用: 2]

Pouryazdan M, Schwen D, Wang D, et al.

Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion

[J]. Phys. Rev., 2012, 86B: 144302

[本文引用: 1]

Bachmaier A, Kerber M, Setman D, et al.

The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion

[J]. Acta Mater., 2012, 60: 860

DOI      URL     [本文引用: 1]

Fully dense bulk nanocomposites have been obtained by a novel two-step severe plastic deformation process in the immiscible Fe-Cu system. Elemental micrometer-sized Cu and Fe powders were first mixed in different compositions and subsequently high-pressure-torsion-consolidated and deformed in a two-step deformation process. Scanning electron microscopy, X-ray diffraction and atom probe investigations were performed to study the evolving far-from-equilibrium nanostructures which were observed at all compositions. For lower and higher Cu contents complete solid solutions of Cu in Fe and Fe in Cu, respectively, are obtained. In the near 50% regime a solid solution face-centred cubic and solid solution body-centred cubic nanograined composite has been formed. After an annealing treatment, these solid solutions decompose and form two-phase nanostructured Fe-Cu composites with a high hardness and an enhanced thermal stability. The grain size of the composites retained nanocrystalline up to high annealing temperatures. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd.

Quelennec X, Menand A, Le Breton J M, et al.

Homogeneous Cu-Fe supersaturated solid solutions prepared by severe plastic deformation

[J]. Philos. Mag., 2010, 90: 1179

DOI      URL     [本文引用: 1]

Miyazaki T, Terada D, Miyajima Y, et al.

Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion

[J]. J. Mater. Sci., 2011, 46: 4296

DOI      URL     [本文引用: 1]

Zghal S, Bhattacharya P, Twesten R, et al.

Structural and chemical characterization of Cu-Ag and Ni-Ag nanocomposites synthesized by high-energy ball milling

[J]. J. Met. Nanocryst. Mater., 2002, 13: 165

[本文引用: 1]

Yavari A R, Desré P J, Benameur T.

Mechanically driven alloying of immiscible elements

[J]. Phys. Rev. Lett., 1992, 68: 2235

DOI      URL     [本文引用: 1]

Martin G.

Phase stability under irradiation: Ballistic effects

[J]. Phys. Rev., 1984, 30B: 1424

[本文引用: 1]

Ashkenazy Y, Pant N, Zhou J, et al.

Phase evolution of highly immiscible alloys under shear deformation: Kinetic pathways, steady states, and the lever-rule

[J]. Acta Mater., 2017, 139: 205

DOI      URL     [本文引用: 1]

Valiev R Z, Krasilnikov N A, Tsenev N K.

Plastic deformation of alloys with submicron-grained structure

[J]. Mater. Sci. Eng., 1991, A137: 35

[本文引用: 1]

Ferrasse S, Segal V M, Alford F, et al.

Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries

[J]. Mater. Sci. Eng., 2008, A493: 130

[本文引用: 1]

Nakashima K, Horita Z, Nemoto M, et al.

Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing

[J]. Acta Mater., 1998, 46: 1589

DOI      URL     [本文引用: 1]

Beyerlein I J, Mara N A, Carpenter J S, et al.

Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation

[J]. J. Mater. Res., 2013, 28: 1799

DOI      URL     [本文引用: 1]

Wang Y, Zhu X Y, Liu G M, et al.

Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers

[J]. Acta Metall. Sin., 2017, 53: 183

DOI      URL     [本文引用: 1]

m can be used to characterize the tendency of material strengthening as the strain rate increases. To investigate the impacts of modulation period and interfacial structures upon strain rate sensitivity of nanoscale multilayers, Cu/Ni nanoscale multilayers with different periods (Λ=4 nm, 12 nm, 20 nm) were prepared on Si substrate with e-beam evaporation technologies, while Cu/Nb nanoscale multilayers with different periods (Λ=5 nm, 10 nm, 20 nm) were prepared on Si substrate with magnetron sputtering technologies. Under vacuum conditions, the Cu/Ni nanoscale multilayers of different periods were annealed at 200 and 400 ℃ for 4 h respectively, and the Cu/Nb nanoscale multilayers of different periods were annealed at 200, 400 ℃ and 600 ℃ for 4 h respectively. Microstructures of Cu/Ni and Cu/Nb nanoscale multilayers were characterized with XRD and TEM. Besides, the hardness of nanoscale multilayers was measured by nano-indentation techniques under different loading strain rates (including 0.005, 0.01, 0.05 and 0.2 s-1). The results suggested that strain rate sensitivity was impacted by interfacial structures and grain size. Both increased density of incoherent interfaces and grain size could result in weaker strain rate sensitivity. As the period increases, the density of incoherent interfaces and the grain size of Cu/Ni nanoscale multilayers increased, leading to a decline in the strain rate sensitivity. While for Cu/Nb nano scale multilayers, the density of incoherent interfaces decreased and their grain size was enlarged with longer period, the m value kept unchanged as a result. As the annealing temperature increasing, the strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers generally tended to decline, which should be ascribed to increased density of incoherent interfaces and grain size in the course of annealing.]]>

王 尧, 朱晓莹, 刘贵民.

Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性

[J]. 金属学报, 2017, 53: 183

DOI      URL     [本文引用: 1]

Λ=4 nm,12 nm,20 nm)的Cu/Ni纳米多层膜,采用磁控溅射技术在Si基片上制备了不同周期(Λ=5 nm,10 nm,20 nm)的Cu/Nb纳米多层膜。在真空条件下,对Cu/Ni纳米多层膜进行了温度分别为200和400 ℃、时间4 h的退火处理,对Cu/Nb纳米多层膜进行了温度分别为200、400和600 ℃,时间为4 h的退火处理。采用XRD和TEM表征了Cu/Ni和Cu/Nb纳米多层膜的结构,采用纳米压痕仪获取了不同加载应变率(0.005、0.01、0.05和0.2 s-1)下纳米多层膜的硬度。结果表明,应变率敏感性受到界面结构和晶粒尺寸的影响,非共格界面密度提高以及晶粒尺寸变大均可导致应变率敏感性下降。当周期变大时,Cu/Ni纳米多层膜的非共格界面密度提高,晶粒尺寸变大,应变率敏感性指数m减小;当周期变大时,Cu/Nb纳米多层膜的非共格界面密度下降,晶粒尺寸变大,m基本不变。随退火温度上升,Cu/Ni和Cu/Nb纳米多层膜应变率敏感性大体上呈现下降趋势,这是由退火过程中非共格界面密度上升和晶粒长大共同引起的。]]>

Zhang X, Zhang J Y, Niu J J, et al.

Ductility and fracture behavior of Cu/Nb nanostructured multilayers

[J]. Chin. J. Nonferrous Met., 2011, 21: 1404

[本文引用: 1]

张 欣, 张金钰, 牛佳佳.

Cu/Nb纳米多层膜延性及其断裂行为

[J]. 中国有色金属学报, 2011, 21: 1404

[本文引用: 1]

Zhang J Y, Zhang P, Zhang X, et al.

Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers

[J]. Mater. Sci. Eng., 2012, A545: 118

[本文引用: 1]

Elofsson V, Almyras G A, B, et al.

Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium

[J]. Acta Mater., 2016, 110: 114

DOI      URL     [本文引用: 1]

Hu M, Gao X M, Weng L J, et al.

The microstructure and improved mechanical properties of Ag/Cu nanoscaled multilayer films deposited by magnetron sputtering

[J]. Appl. Surf. Sci., 2014, 313: 563

DOI      URL     [本文引用: 1]

The Ag/Cu nanoscaled multilayer films, which had a constant thickness of Ag layer (about 15 nm) and various thicknesses of Cu layer from about 4 to 20 nm, have been deposited by magnetron sputtering technique. The phase composition, microstructure, surface topography and mechanical properties of these films were investigated, respectively. XRD results revealed that both Ag and Cu layers in multilayer films had a polycrystalline fcc structure with preferred growth of (1 1 1) orientation. The crystallite sizes decreased greatly compared with that of pure Ag film. High-resolution TEM analysis indicated that the multilayers exhibited obvious interfaces between Ag and Cu layers and had dense and columnar grain morphology. AFM analysis showed that all the multilayers with various thicknesses of Cu layers were much smoother than their constituent Ag and Cu pure films. As compared to that of pure Ag (1.7 GPa) and Cu (2.1 GPa) films, as well as, the hardness values calculated from the rule-of-mixtures, a remarkable increase of hardness was observed for all the multilayer films. The maximum hardness value of 4.3 GPa was obtained for the multilayer film with about 20 nm Cu layer. The vacuum ball-on-disk tribotest results suggested that the multilayer film with highest hardness showed a slight decrease in friction coefficient and notable increase in wear resistance. Especially, these results about mechanical and tribological properties were discussed as a function of the film microstructure. (C) 2014 Elsevier B.V.

Zhang X, Hundley M F, Malinowski A, et al.

Microstructure and electronic properties of Cu/Mo multilayers and three-dimensional arrays of nanocrystalline Cu precipitates embedded in a Mo matrix

[J]. J. Appl. Phys., 2004, 95: 3644

DOI      URL     [本文引用: 1]

Guo Z Z, Sun Y, Duan Y H, et al.

Structure and properties of Cu/Mo nanostructure multilayer deposited by magnetron sputtering

[J]. Chin. J. Rare Met., 2012, 36: 92

[本文引用: 2]

郭中正, 孙 勇, 段永华.

磁控溅射Cu/Mo纳米多层膜的结构与性能

[J]. 稀有金属, 2012, 36: 92

[本文引用: 2]

Fenn M, Petford-Long A K, Donovan P E.

Electrical resistivity of Cu and Nb thin films and multilayers

[J]. J. Magn. Magn. Mater., 1999, 198-199: 231

DOI      URL     [本文引用: 2]

Lima A L, Zhang X, Misra A, et al.

Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers

[J]. Thin Solid Films, 2007, 515: 3574

DOI      URL     [本文引用: 2]

Monclús M A, Karlik M, Callisti M, et al.

Microstructure and mechanical properties of physical vapor deposited Cu/W nanoscale multilayers: Influence of layer thickness and temperature

[J]. Thin Solid Films, 2014, 571: 275

DOI      URL     [本文引用: 2]

Based on our previous knowledge on Cu/Nb nanoscale metallic multilayers (NMMs), Cu/W NMMs show a good potential for applications as heat skins in plasma experiments and armors, and it could be expected that the substitution of Nb by W would increase the strength, particularly at high temperatures. To check this hypothesis, Cu/W NMMs with individual layer thicknesses ranging between 5 and 30 nm were deposited by physical vapor deposition, and their mechanical properties were measured by nanoindentation. The results showed that, contrary to Cu/Nb NMMs, the hardness was independent of the layer thickness and decreased rapidly with temperature, especially above 200 degrees C. This behavior was attributed to the growth morphology of the W layers as well as the jagged Cu/W interface, both a consequence of the low W adatom mobility during deposition. Therefore, future efforts on the development of Cu/W multilayers should concentrate on optimization of the W deposition parameters via substrate heating and/or ion assisted deposition to increase the W adatom mobility during deposition. (C) 2014 Elsevier B.V.

Wen S P, Zong R L, Zeng F, et al.

Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers

[J]. Acta Mater., 2007, 55: 345

DOI      URL     [本文引用: 2]

AbstractThe microstructure, hardness and elastic modulus of Cu/W multilayers prepared by evaporation deposition were investigated by X-ray diffraction, transmission electron microscopy and nanoindenation. The results show that the multilayers with good modulation structure have asymmetrical interfaces. The W on Cu interfaces are relatively sharp, while the Cu on W interfaces are diffuse, with significant intermixing. The intermixing results in compression of the out-of-plane interplanar spacing of the W layer. The compression increases with decreasing periodicity and leads to modulus enhancement. The hardness values also increase with decreasing periodicity, which is interpreted by the Lehoczky model.]]>

Guo Z Z, Sun Y, Duan Y H, et al.

Structures and properties of Cu/W nanostructured multilayers deposited by sputtering

[J]. Rare Met. Mater. Eng., 2014, 43: 906

[本文引用: 2]

郭中正, 孙 勇, 段永华.

溅射沉积Cu/W纳米多层膜结构与性能

[J]. 稀有金属材料与工程, 2014, 43: 906

URL     [本文引用: 2]

Lai W S, Yang M J.

Observation of largely enhanced hardness in nanomultilayers of the Ag-Nb system with positive enthalpy of formation

[J]. Appl. Phys. Lett., 2007, 90: 181917

DOI      URL     [本文引用: 3]

Meyers M A, Mishra A, Benson D J.

Mechanical properties of nanocrystalline materials

[J]. Prog. Mater. Sci., 2006, 51: 427

DOI      URL     [本文引用: 2]

Misra A, Krug H.

Deformation behavior of nanostructured metallic multilayers

[J]. Adv. Eng. Mater., 2001, 3: 217

DOI      URL     [本文引用: 2]

Lehoczky S L.

Strength enhancement in thin-layered Al-Cu laminates

[J]. J. Appl. Phys., 1978, 49: 5479

DOI      URL     [本文引用: 1]

Zhang J Y, Wang Y Q, Wu K, et al.

Strain rate sensitivity of nanolayered Cu/X (X=Cr, Zr) micropillars: Effects of heterophase interface/twin boundary

[J]. Mater. Sci. Eng., 2014, A612: 28

[本文引用: 1]

Zhu X Y, Pan F.

Progress in research on the mechanical properties of nanoscale metallic multilayers

[J]. Mater. China, 2011, 30(10): 1

[本文引用: 1]

朱晓莹, 潘 峰.

金属纳米多层膜力学性能研究进展

[J]. 中国材料进展, 2011, 30(10): 1

[本文引用: 1]

Troche P, Hoffmann J, Heinemann K, et al.

Thermally driven shape instabilities of Nb/Cu multilayer structures: Instability of Nb/Cu multilayers

[J]. Thin Solid Films, 1999, 353: 33

DOI      URL     [本文引用: 1]

Lee H J, Kwon K W, Ryu C, et al.

Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction

[J]. Acta Mater., 1999, 47: 3965

DOI      URL     [本文引用: 2]

Moszner F, Cancellieri C, Chiodi M, et al.

Thermal stability of Cu/W nano-multilayers

[J]. Acta Mater., 2016, 107: 345

DOI      URL     [本文引用: 1]

Ma Y J, Wei M Z, Sun C, et al.

Length scale effect on the thermal stability of nanoscale Cu/Ag multilayers

[J]. Mater. Sci. Eng., 2017, A686: 142

[本文引用: 2]

Tsaur B Y, Mayer J W, Tu K N.

Ion-beam induced metastable Pt2Si3 phase. I. Formation, structure, and properties

[J]. J. Appl. Phys., 1980, 51: 5326

DOI      URL     [本文引用: 1]

Gong H R, Liu B X.

Influence of interfacial texture on solid-state amorphization and associated asymmetric growth in immiscible Cu-Ta multilayers

[J]. Phys. Rev., 2004, 70B: 134202

[本文引用: 3]

Gong H R, Kong L T, Lai W S, et al.

Metastable phase formation in an immiscible Cu-Ta system studied by ion-beam mixing, ab initio calculation, and molecular dynamics simulation

[J]. Acta Mater., 2003, 51: 3885

DOI      URL     [本文引用: 1]

AbstractIon-beam mixing experiments show that amorphous phases are formed in the Cu70Ta30, Cu65Ta35, Cu60Ta40, and Cu50Ta50 multilayered samples, while a crystalline structure is retained in the Cu75Ta25 sample. These results suggest that the composition limit for forming an amorphous phase is around 30 at.% Ta, which confirms the same value of 30 at.% Ta predicted by recent atomistic modeling. For the metastable crystalline Cu75Ta25 phase, ab initio calculations identify its relatively stable structure to be L12 (fcc type) and determine some associated physical properties, which agree well with those derived from a proven realistic Cu-Ta potential through molecular dynamics simulations. Interestingly, an fcc Cu75Ta25 phase is indeed observed in ion-beam mixing experiments and its lattice constant determined by diffraction analysis matches well with those from theoretical calculations.]]>

Gong H R, Liu B X.

Unusual alloying behavior at the equilibrium immiscible Cu-Nb interfaces

[J]. J. Appl. Phys., 2004, 96: 3020

DOI      URL     [本文引用: 3]

Wang T L, Li J H, Tai K P, et al.

Formation of amorphous phases in an immiscible Cu-Nb system studied by molecular dynamics simulation and ion beam mixing

[J]. Scr. Mater., 2007, 57: 157

DOI      URL     [本文引用: 2]

Gong H R, Kong L T, Lai W S, et al.

Glass-forming ability determined by an n-body potential in a highly immiscible Cu-W system through molecular dynamics simulations

[J]. Phys. Rev., 2003, 68B: 144201

[本文引用: 4]

Bai X, Wang T L, Ding N, et al.

Nonequilibrium alloy formation in the immiscible Cu-Mo system studied by thermodynamic calculation and ion beam mixing

[J]. J. Appl. Phys., 2010, 108: 073534

DOI      URL     [本文引用: 1]

Gong H R, Kong L T, Liu B X.

Metastability of an immiscible Cu-Mo system calculated from first-principles and a derived n-body potential

[J]. Phys. Rev., 2004, 69B: 024202

[本文引用: 2]

Yan H F, Shen Y X, Guo H B, et al.

Metastable phase formation in the immiscible Cu-Co system studied by thermodynamic, molecular dynamics and ab initio calculations together with ion beam mixing

[J]. J. Phys.: Condens. Matter, 2007, 19: 026219

DOI      URL     [本文引用: 1]

Tai K P, Dai X D, Shen Y X, et al.

Formation and structural anomaly of the metastable phases in an immiscible Ag-Mo system studied by ion beam mixing and molecular dynamics simulation

[J]. J. Phys. Chem., 2006, 110B: 595

[本文引用: 5]

Tai K P, Dai X D, Liu B X.

Spinodal decomposition induced in a highly immiscible Ag-Mo system by ion irradiation

[J]. Appl. Phys. Lett., 2006, 88: 184103

DOI      URL     [本文引用: 1]

Liu J B, Li Z C, Liu B X, et al.

Stability of a nonequilibrium phase in an immiscible Ag-Ni system studied by ab initio calculations and ion-beam-mixing experiment

[J]. Phys. Rev., 2001, 63B: 132204

[本文引用: 1]

Zhang R F, Shen Y X, Gong H R, et al.

Atomistic modeling of metastable phase selection of a highly immiscible Ag-W system

[J]. J. Phys. Soc. Jpn., 2004, 73: 2023

DOI      URL     [本文引用: 2]

Li G P, Huang Q C, Yang L S, et al.

Effects of ion implantation on in vitro pollen germination and cellular organization of pollen tube in Pinus thunbergii parl. (Japanese Black Pine)

[J]. Plasma Sci. Technol., 2006, 8: 618

DOI      URL     [本文引用: 1]

Rossi J O, Ueda M, Mello C B, et al.

Short repetitive pulses of 50~75 kV applied to plasma immersion implantation of aerospace materials

[J]. IEEE Trans. Plasma Sci., 2009, 37: 204

DOI      URL     [本文引用: 1]

Prudêncio L M, Da Silva R C, da Silva M F, et al.

Modification and characterization of Al surfaces implanted with Cr ions

[J]. Surf. Coat. Technol., 2000, 128-129: 166

DOI      URL     [本文引用: 1]

Duo S W, Li M S, Zhou Y C.

Effect of ion implantation upon erosion resistance of polyimide films in space environment

[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(Suppl.2): s661

DOI      URL     [本文引用: 1]

Starikov S V, Insepov Z, Rest J, et al.

Radiation-induced damage and evolution of defects in Mo

[J]. Phys. Rev., 2011, 84B: 104109

[本文引用: 1]

Shu S P, Bellon P, Averback R S.

Role of point-defect sinks on irradiation-induced compositional patterning in model binary alloys

[J]. Phys. Rev., 2015, 91B: 214107

[本文引用: 1]

Zolnikov K P, Korchuganov A V, Kryzhevich D S.

Dynamics of dislocation loops in radiation-damaged Fe-10Cr crystallites

[J]. J. Phys.: Conf. Ser., 2019, 1147: 012084

DOI      URL     [本文引用: 1]

Shu S P, Zhang X, Beach J A, et al.

Irradiation-induced formation of nanorod precipitates in a dilute Cu-W alloy

[J]. Scr. Mater., 2016, 115: 155

DOI      URL     [本文引用: 1]

Du J L, Huang Y, Liu J W, et al.

Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin

[J]. Mater. Des., 2019, 170: 107699

DOI      URL     [本文引用: 24]

Li L T, Zhang J, Pan X C, et al.

Induction of diffusion and construction of metallurgical interfaces directly between immiscible Mo and Ag by irradiation-induced point defects

[J]. RSC Adv., 2017, 7: 53763

DOI      URL     [本文引用: 25]

Du J L, Huang Y, Xiao C, et al.

Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA)

[J]. J. Mater. Sci. Technol., 2018, 34: 689

DOI      URL     [本文引用: 5]

Liu Z Z.

Research on prepartion of laminar metal matrix composites based on immiscible alloy systems with irradiation damage alloying mechanism

[D]. Tianjin: Tianjin University, 2012

[本文引用: 1]

刘贞贞.

辐照损伤合金化制备互不固溶层状金属基复合材料的研究

[D]. 天津: 天津大学, 2012

[本文引用: 1]

Paul A, van Dal M J H, Kodentsov A A, et al.

The Kirkendall effect in multiphase diffusion

[J]. Acta Mater., 2004, 52: 623

DOI      URL     [本文引用: 1]

AbstractRecently, the presence of two Kirkendall planes has been discovered in solid-state diffusion couples in various binary metallic systems in our laboratory, and in this work even three Kirkendall marker planes were found in a couple Ti/TiAl3. The bifurcation and trifurcation of the Kirkendall plane can quantitatively be described using the classical diffusion theory in terms of Kirkendall velocity construction. The position of a Kirkendall plane is revealed in the reaction zone not only by inert markers, but also by a different crystal morphology on either side of the plane. A physico-chemical approach is developed which elucidates the role of the Kirkendall effect in the morphogenesis of interdiffusion systems. The occurrence of one or more Kirkendall planes, characterized by morphology changes in the reaction layers, turns out to be related to different nucleation sites of the product grains. The model is demonstrated using the experimental results in the Co–Si system. It is shown that the predictions using the physico-chemical approach are in good agreement with the experimentally found positions of the Kirkendall plane(s). The presence or absence of inert markers at the Kirkendall planes provides insight into the initial stages of reactive phase formation.]]>

Jiao X Y, Wang X H, Feng P Z, et al.

Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering

[J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 440

[本文引用: 1]

Alimadadi H, Kjartansdóttir C, Burrows A, et al.

Nickel-aluminum diffusion: A study of evolution of microstructure and phase

[J]. Mater. Charact., 2017, 130: 105

DOI      URL     [本文引用: 1]

Pan X C, Zhang J, Huang Y, et al.

Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method

[J]. J. Alloys Compd., 2017, 723: 1053

DOI      URL     [本文引用: 7]

Zhang J, Huang Y, Liu Y C, et al.

Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper's melting point

[J]. Mater. Des., 2018, 137: 473

DOI      URL     [本文引用: 3]

Zhang J, Huang Y, Wang Z M, et al.

Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range

[J]. J. Alloys Compd., 2019, 774: 939

DOI      URL     [本文引用: 32]

Yi X H.

Properties of formation and growth of cluster structures during solidification processes of liquid metal Cu

[J]. Mater. Rep., 2015, 29B(24): 122

[本文引用: 1]

易学华.

熔体金属铜凝固过程中原子团簇结构的形成与生长特性

[J]. 材料导报, 2015, 29B(24): 122

[本文引用: 1]

Yi X H, Liu R S, Tian Z A, et al.

Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid metal Cu

[J]. Acta Phys. Sin., 2006, 55: 5386

[本文引用: 1]

易学华, 刘让苏, 田泽安.

冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究

[J]. 物理学报, 2006, 55: 5386

DOI      URL     [本文引用: 1]

14K/s时得到非晶态结构;当冷速分别为1.0×1013K/s,1.0×1012K/s和1.3×1011K/s时,系统形成以1421键型为主体的面心立方(fcc)与六角密集(hcp)共存的混合晶体结构;且其结晶温度分别为373K,773K和873K,即冷速越慢,其结晶温度越高,结晶程度也越高;且冷速越慢,1421键型越多,混合晶体中面心立方(fcc)结构所占的比例越高. 同时发现,原子的平均配位数的变化与1551,1441,1661键型的变化密切相关, 反映出体系对称性结构的变化规律与配位数的变化有关. 在可视化分析中,进一步采用中心原子法展现出非晶态与晶体结构的2D截面,及在3D下混合晶体中两个基本原子团分别为面心立方(fcc)与六角密集(hcp)基本原子团的具体结构.]]>

Wang H L, Wang X X, Liang H Y.

Molecular dynamics simulation and analysis of bulk and surface melting processes for metal Cu

[J]. Acta Metall. Sin., 2005, 41: 568

URL     [本文引用: 1]

Molecular dynamics simulations of the bulk and surface melting processeswere performed for metal Cu. The variations of the structure and energy inthe system during bulk melting process were analyzed. The movement of thesolid/liquid interface position during surface melting process wasobserved. The interaction between atoms in the system adopts theembedded atom potential proposed by Mishin. The simulation results showthat the structure and energy in the system vary discontinuously at 1585 Kin bulk melting process and the solid/liquid interface remainsunchanged at 1380 K in the surface melting process. The differentmechanisms of the two melting processes induce lower thermodynamicmelting point (1380 K) than the bulk melting point (1585 K). Surfacemelting is significant in real melting process, so the experimentaldatum measured is the thermodynamic melting point. The simulated meltingpoint coincides well with the experimental one, thus it can be concluded thatthe present melting point simulation method is correct and effective,and the Mishin's embedded atom potential is suitablefor dealing with complicated and disordered systems.

王海龙, 王秀喜, 梁海戈.

金属Cu体熔化与表面熔化行为的分子动力学模拟与分析

[J]. 金属学报, 2005, 41: 568

URL     [本文引用: 1]

采用Mishin嵌入原子势, 通过分子动力学方法模拟了金属Cu原子体系的体熔化和表面熔化行为, 分析了体熔化过程中系统结构组态和能量变化以及表面熔化过程中固-液界面迁移情况. 模拟结果表明: 在体熔化过程中, 结构组态与能量在1585 K处发生突变; 在表面熔化过程中, 固-液界面在1380 K保持静止. 两种熔化过程的不同发生机制是导致体熔点1585 K高于热力学熔点1380 K的原因.在实际熔化中, 表面熔化处于支配地位, 实验测量的是热力学熔点. 得到的热力学熔点与实验结果吻合良好, 验证了本文所采用方法是正确和有效的, 同时也说明了Mishin嵌入原子势适合处理复杂无序体系.

Yang G Q, Li J F, Shi Q W, et al.

Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: A molecular dynamics study

[J]. Comput. Mater. Sci., 2014, 86: 64

DOI      URL     [本文引用: 1]

Li G L, Wu H Y, Luo H L, et al.

Diffusion behavior of Cu/Ta heterogeneous interface under high temperature and high strain: An atomistic investigation

[J]. AIP Adv., 2017, 7: 095320

DOI      URL     [本文引用: 1]

Zhang J M, Chen G X, Xu K W.

Atomistic study of self-diffusion in Cu-Ag immiscible alloy system

[J]. J. Alloys Compd., 2006, 425: 169

DOI      URL     [本文引用: 1]

Chen S D, Soh A K, Ke F J.

Molecular dynamics modeling of diffusion bonding

[J]. Scr. Mater., 2005, 52: 1135

DOI      URL     [本文引用: 1]

/