Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1075-1083    DOI: 10.11900/0412.1961.2019.00445
  本期目录 | 过刊浏览 |
650 ℃时效对9Cr-ODS钢显微组织和性能的影响
彭艳艳, 余黎明(), 刘永长, 马宗青, 刘晨曦, 李冲, 李会军
天津大学材料科学与工程学院天津市复合材料与功能化重点实验室 天津 300072
Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel
PENG Yanyan, YU Liming(), LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun
Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
引用本文:

彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
Yanyan PENG, Liming YU, Yongchang LIU, Zongqing MA, Chenxi LIU, Chong LI, Huijun LI. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. Acta Metall Sin, 2020, 56(8): 1075-1083.

全文: PDF(2906 KB)   HTML
摘要: 

采用粉末冶金工艺制备了9Cr-ODS钢,采用XRD、SEM、TEM、硬度测试等方法对9Cr-ODS钢在650 ℃下时效不同时间后的组织演变与热稳定性进行了研究。结果表明:原始烧结态组织主要由板条马氏体和Y2O3析出相组成;随着时效时间的增加,9Cr-ODS钢的板条马氏体逐渐粗化,位错减少,同时Cr23C6碳化物开始析出并长大。大尺寸Laves相在时效中逐渐析出并随时效时间延长而长大。尺寸较大的Y2O3粒子在时效中进一步增大,而尺寸稍小的Y2O3在时效中析出数量增多。显微硬度随时效时间的增加先下降然后逐渐趋于稳定。

关键词 9Cr-ODS钢时效热稳定性    
Abstract

Oxide dispersion strengthened (ODS) steel has excellent high-temperature performance and corrosion resistance. It has broad application prospect and development space in the key field of high temperature structural materials for nuclear power. 9Cr-ODS steel has become one of the most promising candidate materials in advanced nuclear reactors because of its excellent high temperature mechanical properties and radiation resistance. In this work, 9Cr-ODS steel was designed and prepared by powder metallurgy process. The as-hot isostatically pressed (HIPed) microstructure of the steel was studied and analyzed, including matrix grain distribution characteristics, micron-scale large size precipitated phase, and nanoscale oxide particles. In addition, the high temperature microstructure thermal stability of 9Cr-ODS steel aged at 650 ℃ for different time was researched by means of XRD, SEM, TEM and hardness test, and the microstructure change of matrix and hardness properties were analyzed. Based on the contrast analysis of the matrix microstructure and hardness properties, the hardness change of the austenitic ODS steel at high temperature was obtained. The results showed that the original as-HIPed microstructure of 9Cr-ODS steel is mainly composed of martensite lath and large amount of Y2O3. During ageing process, the lath martensite of 9Cr-ODS steel gradually coarsens and the number of dislocations decreases with ageing time increasing, and the Cr23C6 carbides begin to precipitate along the grain boundary and grow up. At the same time, the Laves phases with large size begin to precipitate in ageing and then grow with the increase of ageing time. Meanwhile, ageing treatment makes Y2O3 phase with larger size further grow, while Y2O3 phase with smaller size precipitate increase. This phenomenon can probably be associated with the dissolution of the fine particles induced from the particle coarsening, generally called the Ostwald-Ripening mechanism. The change of microhardness during ageing was related to the size of lath martensite and the number and density of the second phase precipitation, especially Cr23C6. The hardness test results show that the microhardness first decreases and then tends to be stable with the increase of ageing time.

Key words9Cr-ODS steel    ageing    thermal stability
收稿日期: 2019-12-24     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(51974199);国家自然科学基金项目(U1960204)
作者简介: 彭艳艳,女,1994年生,硕士
图1  9Cr-ODS钢在650 ℃不同时效时间的XRD谱
图2  9Cr-ODS钢在650 ℃不同时效时间下的TEM明场像
图3  9Cr-ODS钢在650 ℃不同时效时间下的马氏体板条尺寸统计图和平均尺寸图
图4  9Cr-ODS钢中氧化物在650 ℃不同时效时间的TEM明场像
图5  9Cr-ODS钢中氧化物的TEM像和EDS
图6  Y2O3与基体的SAED谱
图7  9Cr-ODS钢在650 ℃不同时效时间下的Y2O3尺寸统计图和平均尺寸图
图8  9Cr-ODS钢在650 ℃不同时效时间下的碳化物TEM明场像
图9  9Cr-ODS钢中碳化物的TEM像和EDS
图10  9Cr-ODS钢在650 ℃不同时效时间下的Laves相TEM明场像
图11  9Cr-ODS钢中Laves相的TEM像和EDS
图12  650 ℃时效时硬度随时效时间的变化
[1] Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science [J]. Energy Policy, 2008, 36: 4323
doi: 10.1016/j.enpol.2008.09.059
[2] Mansur L K, Rowcliffe A F, Nanstad P K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences [J]. J. Nucl. Mater., 2004, 329-333: 166
doi: 10.1016/j.jnucmat.2004.04.016
[3] Xu M. The development of fast reactor technology, to ensure the sustainable development of nuclear energy [J]. China Nucl. Power, 2012, 5: 98
[3] (徐 銤. 发展快堆技术, 保证核能可持续发展 [J]. 中国核电, 2012, 5: 98)
[4] Bloom E E, Busby J T, Duty C E, et al. Critical questions in materials science and engineering for successful development of fusion power [J]. J. Nucl. Mater., 2007, 367-370: 1
doi: 10.1016/j.jnucmat.2007.02.007
[5] Marques J G. Evolution of nuclear fission reactors: Third generation and beyond [J]. Energy Conv. Manag., 2010, 51: 1774
doi: 10.1016/j.enconman.2009.12.043
[6] Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54: 1321
doi: 10.1016/j.scriptamat.2005.12.017
[7] Jiang Y, Smith J R, Odette G R. Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study [J]. Phys. Rev., 2009, 79B: 064103
[8] Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150 pmid: 22019943
[9] Zhao Q, Yu L M, Liu Y C, et al. Microstructure and tensile properties of a 14Cr ODS ferritic steel [J]. Mater. Sci. Eng., 2017, A680: 347
[10] Ijiri Y, Oono N, Ukai S, et al. Oxide particle-dislocation interaction in 9Cr-ODS steel [J]. Nucl. Mater. Energy, 2016, 9: 378
[11] Zhang L, Ukai S, Hoshino T, et al. Y2O3 evolution and dispersion refinement in Co-base ODS alloys [J]. Acta Mater., 2009, 57: 3671
doi: 10.1016/j.actamat.2009.04.033
[12] Peng Y Y, Yu L M, Liu Y C, et al. Microstructures and tensile properties of an austenitic ODS heat resistance steel [J]. Mater. Sci. Eng., 2019, A767: 138419
[13] Peng Y Y. Study on precipitation behavior of strengthening phase and microstructure thermal stability of austenitic ODS steel [D]. Tianjin: Tianjin University, 2019
[13] (彭艳艳. 奥氏体ODS钢的强化相析出行为及其组织热稳定性研究 [D]. 天津: 天津大学, 2019)
[14] Ren J, Yu L M, Liu Y C, et al. Effects of Zr addition on strengthening mechanisms of Al-alloyed high-Cr ODS steels [J]. Materials, 2018, 11: 118
doi: 10.3390/ma11010118
[15] Dong H Q, Yu L M, Liu Y C, et al. Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels [J]. J. Alloys Compd., 2017, 702: 538
doi: 10.1016/j.jallcom.2017.01.298
[16] Muroga T, Nagasaka T, Li Y, et al. Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels [J]. Fusion Eng. Des., 2014, 89: 1717
doi: 10.1016/j.fusengdes.2014.01.010
[17] Li Y F, Abe H, Li F, et al. Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
doi: 10.1016/j.jnucmat.2014.08.047
[18] Yan P Y, Yu L M, Liu Y C, et al. Effects of Hf addition on the thermal stability of 16Cr-ODS steels at elevated aging temperatures [J]. J. Alloys Compd., 2018, 739: 368
doi: 10.1016/j.jallcom.2017.12.245
[19] Li Y F, Nagasaka T, Muroga T, et al. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs [J]. Fusion Eng. Des., 2011, 86: 2495
doi: 10.1016/j.fusengdes.2011.03.004
[20] Zhou X S, Liu Y C, Yu L M, et al. Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering [J]. Mater. Des., 2017, 132: 158
doi: 10.1016/j.matdes.2017.06.063
[21] Yamamoto M, Ukai S, Hayashi S, et al. Formation of residual ferrite in 9Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2010, A527: 4418
[22] Ohtsuka S, Ukai S, Fujiwara M. Nano-mesoscopic structural control in 9Cr ODS ferritic/martensitic steels [J]. J. Nucl. Mater., 2006, 351: 241
doi: 10.1016/j.jnucmat.2006.02.006
[23] Zhang G M. Study on strengthening mechanism and performance evaluation of 9Cr oxide dispersion strengthened steel [D]. Beijing: University of Science and Technology Beijing, 2016
[23] (张广明. 9Cr氧化物弥散强化的强化机理研究及性能评价 [D]. 北京: 北京科技大学, 2016)
[24] Dong H Q, Yu L M, Liu Y C, et al. Enhancement of tensile properties due to microstructure optimization in ODS steels by zirconium addition [J]. Fusion Eng. Des., 2017, 125: 402
doi: 10.1016/j.fusengdes.2017.03.170
[25] Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
doi: 10.1088/1468-6996/9/1/013002 pmid: 27877920
[26] Mukhopadhyay D K. Development of oxide dispersion strengthened ferritic steels for fusion [J]. J. Nucl. Mater., 1998, 258-263: 1209
doi: 10.1016/S0022-3115(98)00188-3
[27] Zhang L Y, Yu L M, Liu Y C, et al., Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels [J], Mater. Sci. Eng., 2017, A695:66
[28] Bentley J, Hoelzer D T, Coffey D W, et al. EFTEM and spectrum imaging of mechanically alloyed oxide-dispersion-strengthened 12YWT and 14YWT ferritic steels [J]. Microsc. Microanal., 2004, 10(S02): 662
[29] Sugino Y, Ukai S, Hayashi Q, et al. Directional recrystallization of ODS alloys by means of zone annealing [J]. J. Nucl. Mater., 2011, 417: 171
doi: 10.1016/j.jnucmat.2011.01.062
[30] Ren J, Yu L M, Liu Y C, et al., Microstructure evolution and tensile properties of an Al added high-Cr ODS steel during thermal aging at 650 ℃ [J]. Fusion Eng. Des., 2020, 157: 111700
doi: 10.1016/j.fusengdes.2020.111700
[31] Miller M K, Hoelzer D T, Kenik E A, et al. Stability of ferritic MA/ODS alloys at high temperatures [J]. Intermetallics, 2015, 13: 387
doi: 10.1016/j.intermet.2004.07.036
[32] Huang J D,Mei J P,Yan J L. Microstructure degradation and properties evolution of T91 steel during aging[J]. Heat Treat. Met., 2016, 42(11): 45
[32] (黄金督, 梅建平, 晏井利等. T91钢时效过程中的组织老化和性能变化[J]. 金属热处理, 2016, 41(11): 45)
[33] Ren J, Yu L M, Liu Y C, et al., Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600 ℃ [J]. Appl. Sur. Sci., 2019, 480: 969
doi: 10.1016/j.apsusc.2019.03.019
[34] Xie R, Lü Z, Lu C Y, et al. Characterization of nanosized precipitates in 9Cr-ODS steels by SAXS and TEM [J]. Acta Metall. Sin., 2016, 52: 1053
doi: 10.11900/0412.1961.2016.00164
[34] (谢 锐, 吕 铮, 卢晨阳等. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究 [J]. 金属学报, 2016, 52: 1053)
doi: 10.11900/0412.1961.2016.00164
[35] Shigeharu U, Takeji K, Satoshi O. Production and properties of nano-scale oxide dispersion strengthened (ODS) 9Cr martensitic steel claddings [J]. ISIJ Int., 2003, 43: 2038
doi: 10.2355/isijinternational.43.2038
[36] He J C, Wan F R. The research of nano-scale particles in the oxide dispersion strengthened steels [J]. J. Funct. Mater., 2014, 45: 17029
[36] (贺建超, 万发荣. ODS钢中纳米氧化物颗粒成分与结构研究 [J]. 功能材料, 2014, 45: 17029)
[37] Zhang C H, Kimura A, Kasada R, et al. Characterization of the oxide particles in Al-added high-Cr ODS ferritic steels [J]. J. Nucl. Mater., 2011, 417: 221
doi: 10.1016/j.jnucmat.2010.12.063
[38] Li B, Xu X W. Microstructure and mechanical properties of aged T/P92 steel [J]. Heat Treat. Met., 2014, 39(12): 110
doi: 10.13251/j.issn.0254-6051.2014.12.029
[38] (李 斌, 徐晓伟. T/P92钢的时效组织与性能 [J]. 金属热处理, 2014, 39(12): 110)
doi: 10.13251/j.issn.0254-6051.2014.12.029
[39] Ma W J, Lu Q, Shi Q Q, et al. Structure stability of a newly designed martensitic heat-resistant steel [J]. Heat Treat. Met., 2017, 42(5): 27
[39] (马文杰, 卢 奇, 石全强等. 新设计的马氏体耐热钢的组织稳定性 [J]. 金属热处理, 2017, 42(5): 27)
[40] Hu P, Yan W, Shan Y Y, et al. Study on structural evolution and mechanical properties of high Cr ferritic heat-resistant steel in ageing process [J]. Guangdong Electr. Power, 2011, 24(11): 6
[40] (胡 平, 严 伟, 单以银等. 高Cr铁素体耐热钢时效过程中的组织演变与力学性能研究 [J]. 广东电力, 2011, 24(11): 6)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[6] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[7] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[8] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[9] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[10] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[11] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[12] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[13] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[14] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[15] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.