|
|
650 ℃时效对9Cr-ODS钢显微组织和性能的影响 |
彭艳艳, 余黎明( ), 刘永长, 马宗青, 刘晨曦, 李冲, 李会军 |
天津大学材料科学与工程学院天津市复合材料与功能化重点实验室 天津 300072 |
|
Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel |
PENG Yanyan, YU Liming( ), LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun |
Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China |
引用本文:
彭艳艳, 余黎明, 刘永长, 马宗青, 刘晨曦, 李冲, 李会军. 650 ℃时效对9Cr-ODS钢显微组织和性能的影响[J]. 金属学报, 2020, 56(8): 1075-1083.
Yanyan PENG,
Liming YU,
Yongchang LIU,
Zongqing MA,
Chenxi LIU,
Chong LI,
Huijun LI.
Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. Acta Metall Sin, 2020, 56(8): 1075-1083.
[1] |
Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science [J]. Energy Policy, 2008, 36: 4323
doi: 10.1016/j.enpol.2008.09.059
|
[2] |
Mansur L K, Rowcliffe A F, Nanstad P K, et al. Materials needs for fusion, Generation IV fission reactors and spallation neutron sources-similarities and differences [J]. J. Nucl. Mater., 2004, 329-333: 166
doi: 10.1016/j.jnucmat.2004.04.016
|
[3] |
Xu M. The development of fast reactor technology, to ensure the sustainable development of nuclear energy [J]. China Nucl. Power, 2012, 5: 98
|
[3] |
(徐 銤. 发展快堆技术, 保证核能可持续发展 [J]. 中国核电, 2012, 5: 98)
|
[4] |
Bloom E E, Busby J T, Duty C E, et al. Critical questions in materials science and engineering for successful development of fusion power [J]. J. Nucl. Mater., 2007, 367-370: 1
doi: 10.1016/j.jnucmat.2007.02.007
|
[5] |
Marques J G. Evolution of nuclear fission reactors: Third generation and beyond [J]. Energy Conv. Manag., 2010, 51: 1774
doi: 10.1016/j.enconman.2009.12.043
|
[6] |
Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54: 1321
doi: 10.1016/j.scriptamat.2005.12.017
|
[7] |
Jiang Y, Smith J R, Odette G R. Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study [J]. Phys. Rev., 2009, 79B: 064103
|
[8] |
Hirata A, Fujita T, Wen Y R, et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels [J]. Nat. Mater., 2011, 10: 922
doi: 10.1038/nmat3150
pmid: 22019943
|
[9] |
Zhao Q, Yu L M, Liu Y C, et al. Microstructure and tensile properties of a 14Cr ODS ferritic steel [J]. Mater. Sci. Eng., 2017, A680: 347
|
[10] |
Ijiri Y, Oono N, Ukai S, et al. Oxide particle-dislocation interaction in 9Cr-ODS steel [J]. Nucl. Mater. Energy, 2016, 9: 378
|
[11] |
Zhang L, Ukai S, Hoshino T, et al. Y2O3 evolution and dispersion refinement in Co-base ODS alloys [J]. Acta Mater., 2009, 57: 3671
doi: 10.1016/j.actamat.2009.04.033
|
[12] |
Peng Y Y, Yu L M, Liu Y C, et al. Microstructures and tensile properties of an austenitic ODS heat resistance steel [J]. Mater. Sci. Eng., 2019, A767: 138419
|
[13] |
Peng Y Y. Study on precipitation behavior of strengthening phase and microstructure thermal stability of austenitic ODS steel [D]. Tianjin: Tianjin University, 2019
|
[13] |
(彭艳艳. 奥氏体ODS钢的强化相析出行为及其组织热稳定性研究 [D]. 天津: 天津大学, 2019)
|
[14] |
Ren J, Yu L M, Liu Y C, et al. Effects of Zr addition on strengthening mechanisms of Al-alloyed high-Cr ODS steels [J]. Materials, 2018, 11: 118
doi: 10.3390/ma11010118
|
[15] |
Dong H Q, Yu L M, Liu Y C, et al. Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels [J]. J. Alloys Compd., 2017, 702: 538
doi: 10.1016/j.jallcom.2017.01.298
|
[16] |
Muroga T, Nagasaka T, Li Y, et al. Fabrication and characterization of reference 9Cr and 12Cr-ODS low activation ferritic/martensitic steels [J]. Fusion Eng. Des., 2014, 89: 1717
doi: 10.1016/j.fusengdes.2014.01.010
|
[17] |
Li Y F, Abe H, Li F, et al. Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
doi: 10.1016/j.jnucmat.2014.08.047
|
[18] |
Yan P Y, Yu L M, Liu Y C, et al. Effects of Hf addition on the thermal stability of 16Cr-ODS steels at elevated aging temperatures [J]. J. Alloys Compd., 2018, 739: 368
doi: 10.1016/j.jallcom.2017.12.245
|
[19] |
Li Y F, Nagasaka T, Muroga T, et al. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs [J]. Fusion Eng. Des., 2011, 86: 2495
doi: 10.1016/j.fusengdes.2011.03.004
|
[20] |
Zhou X S, Liu Y C, Yu L M, et al. Microstructure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering [J]. Mater. Des., 2017, 132: 158
doi: 10.1016/j.matdes.2017.06.063
|
[21] |
Yamamoto M, Ukai S, Hayashi S, et al. Formation of residual ferrite in 9Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2010, A527: 4418
|
[22] |
Ohtsuka S, Ukai S, Fujiwara M. Nano-mesoscopic structural control in 9Cr ODS ferritic/martensitic steels [J]. J. Nucl. Mater., 2006, 351: 241
doi: 10.1016/j.jnucmat.2006.02.006
|
[23] |
Zhang G M. Study on strengthening mechanism and performance evaluation of 9Cr oxide dispersion strengthened steel [D]. Beijing: University of Science and Technology Beijing, 2016
|
[23] |
(张广明. 9Cr氧化物弥散强化的强化机理研究及性能评价 [D]. 北京: 北京科技大学, 2016)
|
[24] |
Dong H Q, Yu L M, Liu Y C, et al. Enhancement of tensile properties due to microstructure optimization in ODS steels by zirconium addition [J]. Fusion Eng. Des., 2017, 125: 402
doi: 10.1016/j.fusengdes.2017.03.170
|
[25] |
Abe F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
doi: 10.1088/1468-6996/9/1/013002
pmid: 27877920
|
[26] |
Mukhopadhyay D K. Development of oxide dispersion strengthened ferritic steels for fusion [J]. J. Nucl. Mater., 1998, 258-263: 1209
doi: 10.1016/S0022-3115(98)00188-3
|
[27] |
Zhang L Y, Yu L M, Liu Y C, et al., Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels [J], Mater. Sci. Eng., 2017, A695:66
|
[28] |
Bentley J, Hoelzer D T, Coffey D W, et al. EFTEM and spectrum imaging of mechanically alloyed oxide-dispersion-strengthened 12YWT and 14YWT ferritic steels [J]. Microsc. Microanal., 2004, 10(S02): 662
|
[29] |
Sugino Y, Ukai S, Hayashi Q, et al. Directional recrystallization of ODS alloys by means of zone annealing [J]. J. Nucl. Mater., 2011, 417: 171
doi: 10.1016/j.jnucmat.2011.01.062
|
[30] |
Ren J, Yu L M, Liu Y C, et al., Microstructure evolution and tensile properties of an Al added high-Cr ODS steel during thermal aging at 650 ℃ [J]. Fusion Eng. Des., 2020, 157: 111700
doi: 10.1016/j.fusengdes.2020.111700
|
[31] |
Miller M K, Hoelzer D T, Kenik E A, et al. Stability of ferritic MA/ODS alloys at high temperatures [J]. Intermetallics, 2015, 13: 387
doi: 10.1016/j.intermet.2004.07.036
|
[32] |
Huang J D,Mei J P,Yan J L. Microstructure degradation and properties evolution of T91 steel during aging[J]. Heat Treat. Met., 2016, 42(11): 45
|
[32] |
(黄金督, 梅建平, 晏井利等. T91钢时效过程中的组织老化和性能变化[J]. 金属热处理, 2016, 41(11): 45)
|
[33] |
Ren J, Yu L M, Liu Y C, et al., Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600 ℃ [J]. Appl. Sur. Sci., 2019, 480: 969
doi: 10.1016/j.apsusc.2019.03.019
|
[34] |
Xie R, Lü Z, Lu C Y, et al. Characterization of nanosized precipitates in 9Cr-ODS steels by SAXS and TEM [J]. Acta Metall. Sin., 2016, 52: 1053
doi: 10.11900/0412.1961.2016.00164
|
[34] |
(谢 锐, 吕 铮, 卢晨阳等. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究 [J]. 金属学报, 2016, 52: 1053)
doi: 10.11900/0412.1961.2016.00164
|
[35] |
Shigeharu U, Takeji K, Satoshi O. Production and properties of nano-scale oxide dispersion strengthened (ODS) 9Cr martensitic steel claddings [J]. ISIJ Int., 2003, 43: 2038
doi: 10.2355/isijinternational.43.2038
|
[36] |
He J C, Wan F R. The research of nano-scale particles in the oxide dispersion strengthened steels [J]. J. Funct. Mater., 2014, 45: 17029
|
[36] |
(贺建超, 万发荣. ODS钢中纳米氧化物颗粒成分与结构研究 [J]. 功能材料, 2014, 45: 17029)
|
[37] |
Zhang C H, Kimura A, Kasada R, et al. Characterization of the oxide particles in Al-added high-Cr ODS ferritic steels [J]. J. Nucl. Mater., 2011, 417: 221
doi: 10.1016/j.jnucmat.2010.12.063
|
[38] |
Li B, Xu X W. Microstructure and mechanical properties of aged T/P92 steel [J]. Heat Treat. Met., 2014, 39(12): 110
doi: 10.13251/j.issn.0254-6051.2014.12.029
|
[38] |
(李 斌, 徐晓伟. T/P92钢的时效组织与性能 [J]. 金属热处理, 2014, 39(12): 110)
doi: 10.13251/j.issn.0254-6051.2014.12.029
|
[39] |
Ma W J, Lu Q, Shi Q Q, et al. Structure stability of a newly designed martensitic heat-resistant steel [J]. Heat Treat. Met., 2017, 42(5): 27
|
[39] |
(马文杰, 卢 奇, 石全强等. 新设计的马氏体耐热钢的组织稳定性 [J]. 金属热处理, 2017, 42(5): 27)
|
[40] |
Hu P, Yan W, Shan Y Y, et al. Study on structural evolution and mechanical properties of high Cr ferritic heat-resistant steel in ageing process [J]. Guangdong Electr. Power, 2011, 24(11): 6
|
[40] |
(胡 平, 严 伟, 单以银等. 高Cr铁素体耐热钢时效过程中的组织演变与力学性能研究 [J]. 广东电力, 2011, 24(11): 6)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|