Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1439-1447    DOI: 10.11900/0412.1961.2021.00550
  本期目录 | 过刊浏览 |
轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能
娄峰1, 刘轲1(), 刘金学2, 董含武3, 李淑波1, 杜文博1
1.北京工业大学 材料与制造学部 北京 100124
2.郑州轻研合金科技有限公司 郑州 450041
3.重庆市科学技术研究院 金属材料先进制备与成形重点实验室 重庆 401123
Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature
LOU Feng1, LIU Ke1(), LIU Jinxue2, DONG Hanwu3, LI Shubo1, DU Wenbo1
1.Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Zhengzhou Light Alloy Institute Co. Ltd., Zhengzhou 450041, China
3.Key Laboratory of Advanced Forming of Metallic Materials, Chongqing Academy of Sciece and Technology, Chongqing 401123, China
引用本文:

娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
Feng LOU, Ke LIU, Jinxue LIU, Hanwu DONG, Shubo LI, Wenbo DU. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. Acta Metall Sin, 2023, 59(11): 1439-1447.

全文: PDF(5255 KB)   HTML
摘要: 

研究了Mg-xZn-0.5Er (x = 0.5、2.0、3.0、4.0,质量分数,%)合金板材在轧制过程中微观组织及织构的演变规律,并探讨了织构及第二相对合金室温成形性能的影响规律。结果表明,随着Zn含量的增加,合金提前发生了完全动态再结晶,在后续轧制过程中细小的动态再结晶晶粒长大并在应力的作用下被拉长,其显微组织由细小的等轴晶粒和粗大的变形晶粒组成,织构强度增大。当合金组织内仅存在细小弥散的第二相时,板材成形性能主要受板材基面织构影响;当合金组织内存在粗大第二相时,板材成形性能受板材基面织构和第二相共同影响,且当第二相含量较高时,第二相对成形性能的恶化作用会大于织构弱化所带来的积极作用。

关键词 Mg-Zn-Er合金动态再结晶织构第二相成形性能    
Abstract

As lightweight requirements rise in transportation, aerospace, and other industries, magnesium alloys have a great application prospect. However, the low formability capabilities of magnesium alloys lead to a severe limit in applications. At present, there are many reports on the influences of texture and second phases on the formability of magnesium alloys at room temperature. Nevertheless, the dominant factors affecting the formability performance of magnesium alloys at room temperature are not clear. In this study, the development of the microstructures and texture of Mg-xZn-0.5Er (x = 0.5, 2.0, 3.0, 4.0, mass fraction, %) alloy sheets were studied, and the impact of the texture and second phases on the formability of these sheets were also investigated. The findings showed that the increase in Zn addition led to an early and complete dynamic recrystallization (DRX) in Mg-Zn-Er alloys sheets, and these recrystallized grains would expand significantly during subsequent hot rolling processes. These recrystallized grains with a large size were typically elongated and then helped to create a strong basal texture. Thus, it was discovered that the microstructures of these sheets were typically made up of equiaxed and elongated grains. The formability performance of these sheets was strongly related to the size of the second phases and the texture. The formability of the sheets containing microscopic second phases mainly depended on the basal texture, while the formability of the sheets which contained coarse second phases was mostly influenced by the second phases and basal texture. Particularly, when the component of the coarse second was larger, the formability would get more inferior due to the predominant role of the second phase at room temperature.

Key wordsMg-Zn-Er alloy    dynamic recrystallization    texture    second phase    formability
收稿日期: 2021-12-13     
ZTFLH:  TG146.22  
基金资助:国家重点研发计划项目(2021YFB3701100);重庆市科研机构绩效激励引导专项项目(cstc2021jxjl50004);重庆市科研机构绩效激励引导专项项目(cstc2021jxjl50004)
通讯作者: 刘 轲,lk@bjut.edu.cn,主要从事高强稀土镁合金及高塑性镁合金研究
Corresponding author: LIU Ke, associate professor, Tel: (010)67392423, E-mail: lk@bjut.edu.cn
作者简介: 娄 峰,男,1997年生,博士生
图1  轧制态Mg-xZn-0.5Er (x = 0.5、2.0、4.0)合金不同变形量下轧向-横向(RD-TD)面微观组织的OM像
图2  变形量为25%时轧制态Mg-2.0Zn-0.5Er合金轧向-法向(RD-ND)面的EBSD分析
图3  变形量为44%时轧制态Mg-2.0Zn-0.5Er合金RD-ND面的EBSD分析
图4  变形量为78%时轧制态Mg-xZn-0.5Er合金RD-TD面微观组织的OM像
图5  变形量为78%时轧制态Mg-xZn-0.5Er合金RD-ND面的EBSD像
图6  室温条件下变形量为78%时轧制态Mg-xZn-0.5Er合金的杯突成形性能
图7  轧制态Mg-2.0Zn-0.5Er合金板材的杯突失效分析
1 You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magn. Alloy., 2017, 5: 239
doi: 10.1016/j.jma.2017.09.001
2 Liu X W, Liu Y, Jin B, et al. Microstructure evolution and mechanical properties of a SMATed Mg alloy under in situ SEM tensile testing [J]. J. Mater. Sci. Technol., 2017, 33: 224
doi: 10.1016/j.jmst.2016.11.012
3 Zhang J, Joshi S P. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium [J]. J. Mech. Phys. Solids, 2012, 60: 945
doi: 10.1016/j.jmps.2012.01.005
4 Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
doi: 10.1016/j.actamat.2018.09.023
5 Ding W J, Jin L, Wu W X, et al. Texture and texture optimization of wrought Mg alloy [J]. Chin. J. Nonferrous Met., 2011, 21: 2371
5 丁文江, 靳 丽, 吴文祥 等. 变形镁合金中的织构及其优化设计 [J]. 中国有色金属学报, 2011, 21: 2371
6 Huang X S, Suzuki K, Chino Y, et al. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys [J]. Mater. Sci. Eng., 2015, A633: 144
7 Nakata T, Xu C, Ohashi H, et al. New Mg-Al based alloy sheet with good room-temperature stretch formability and tensile properties [J]. Scr. Mater., 2020, 180: 16
doi: 10.1016/j.scriptamat.2020.01.015
8 Wang Q H, Shen Y Q, Jiang B, et al. A good balance between ductility and stretch formability of dilute Mg-Sn-Y sheet at room temperature [J]. Mater. Sci. Eng., 2018, A736: 404
9 Bian M Z, Huang X S, Mabuchi M, et al. Compositional optimization of Mg-Zn-Sc sheet alloys for enhanced room temperature stretch formability [J]. J. Alloys Compd., 2020, 818: 152891
doi: 10.1016/j.jallcom.2019.152891
10 Luo Z P, Zhang S Q, Tang Y L, et al. Thermodynamics of Mg-Zn-RE system solutions forming stable quasicrystals [J]. Scr. Metall. Mater., 1994, 30: 393
doi: 10.1016/0956-716X(94)90592-4
11 Xu D K, Tang W N, Liu L, et al. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys [J]. J. Alloys Compd., 2008, 461: 248
doi: 10.1016/j.jallcom.2007.07.096
12 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans., 2001, 42: 1172
doi: 10.2320/matertrans.42.1172
13 Al-Samman T. Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization [J]. Mater. Sci. Eng., 2013, A560: 561
14 Wang Q F, Du W B, Liu K, et al. Microstructure, texture and mechanical properties of as-extruded Mg-Zn-Er alloys [J]. Mater. Sci. Eng., 2013, A581: 31
15 Meng Y Z, Yu J M, Liu K, et al. The evolution of long-period stacking ordered phase and its effect on dynamic recrystallization in Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion [J]. J. Alloys Compd., 2020, 828: 154454.
doi: 10.1016/j.jallcom.2020.154454
16 Humphreys F J. Recrystallization mechanisms in two-phase alloys [J]. Met. Sci., 1979, 13: 136
doi: 10.1179/msc.1979.13.3-4.136
17 Lou F, Liu K, Lui J X, et al. Microstructure and formability at room temperature of as-annealing Mg-xZn-0.5Er alloy sheets [J]. Chin. J. Nonferrous Met., 2022, 32: 365
17 娄 峰, 刘 轲, 刘金学 等. 退火态Mg-xZn-0.5Er合金板材组织及室温成形性能 [J]. 中国有色金属学报, 2022, 32: 365
18 Kaibyshev R. Dynamic recrystallization in magnesium alloys [A]. Advances in Wrought Magnesium Alloys [M]. Cambridge, UK: Woodhead Publishing, 2012: 186
19 Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2007, A456: 52
20 Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium [J]. Mater. Sci. Eng., 2008, A490: 411
21 Vaughan M W, Nasim W, Dogan E, et al. Interplay between the effects of deformation mechanisms and dynamic recrystallization on the failure of Mg-3Al-1Zn [J]. Acta Mater., 2019, 168: 448
doi: 10.1016/j.actamat.2019.02.010
22 Chino Y, Huang X S, Suzuki K, et al. Influence of Zn concentration on stretch formability at room temperature of Mg-Zn-Ce alloy [J]. Mater. Sci. Eng., 2010, A528: 566
23 Liu K, Lou F, Fu J J, et al. Microstructure and corrosion behaviors of as-rolled Mg-Zn-Er alloy sheets [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 1881
doi: 10.1016/S1003-6326(22)65915-6
24 Liu K, Sun C C, Wang Z H, et al. Microstructure, texture and mechanical properties of Mg-Zn-Er alloys containing I-phase and W-phase simultaneously [J]. J. Alloys Compd., 2016, 665: 76
doi: 10.1016/j.jallcom.2015.10.262
25 Qin D H, Wang M J, Sun C Y, et al. Interaction between texture evolution and dynamic recrystallization of extruded AZ80 magnesium alloy during hot deformation [J]. Mater. Sci. Eng., 2020, A788: 139537
26 Suh B C, Kim J H, Hwang J H, et al. Twinning-mediated formability in Mg alloys [J]. Sci. Rep., 2016, 6: 22364
doi: 10.1038/srep22364
27 Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
doi: 10.1016/j.actamat.2009.02.032
28 Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle pinning [J]. Mater. Sci. Eng., 2011, A528: 4239
29 Liu P, Jiang H T, Duan X G, et al. Effects of yttrium (Y) and cerium (Ce) on microstructure and stretch formability of hot rolled Mg-1.5Zn magnesium sheet at room temperature [J]. J. Mater Eng., 2014, (12): 1
29 刘 鹏, 江海涛, 段晓鸽 等. 稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响 [J]. 材料工程, 2014, (12): 1
30 Cai Z X, Tang D, Jiang H T, et al. Influence of Gd concentration on texture and stretch formability of rolled Mg-Zn-Gd alloys at room temperature [J]. Rare Met. Mater. Eng., 2013, 42: 2073
30 蔡正旭, 唐 荻, 江海涛 等. 不同Gd含量对变形Mg-Zn-Gd合金织构和室温成形性能的影响 [J]. 稀有金属材料与工程, 2013, 42: 2073
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[8] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[11] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[12] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[13] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[14] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[15] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.