Please wait a minute...
金属学报  2020, Vol. 56 Issue (2): 193-202    DOI: 10.11900/0412.1961.2019.00226
  研究论文 本期目录 | 过刊浏览 |
TA32钛合金厚板的微观组织、织构与力学性能
程超1,2,陈志勇1,2(),秦绪山3,刘建荣1,2,王清江1,2
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 沈阳 110016
3. 96901部队 北京 100094
Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate
CHENG Chao1,2,CHEN Zhiyong1,2(),QIN Xushan3,LIU Jianrong1,2,WANG Qingjiang1,2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3. Unit 96901 of the Chinese People's Liberation Army, Beijing 100094, China
全文: PDF(28271 KB)   HTML
摘要: 

采用OM、SEM、XRD和EBSD等手段测试表征了60 mm厚TA32钛合金宽幅厚板的显微组织、织构和力学性能。结果表明,TA32钛合金厚板厚度横截面由变形的片层α相和少量残留的β相组成,从表层到中心位置的RD-ND (R面)和TD-ND (T面)组织差异均不明显,但可观察到明显的轧制流线。板材中α相存在直条状和波浪状2种不同的形貌,这主要与它们的晶体取向有关。板材织构类型为典型的T型织构,从厚度横截面的表层到中心部位,显微组织中α相的c轴<0001>逐渐偏离板材TD方向,导致Schmidt因子逐渐增加,是导致从表层到中心位置的拉伸强度逐渐降低的主要原因之一;另外,晶内亚结构比例逐渐降低是导致拉伸强度逐渐降低的另一个重要因素。板材厚度横截面上相同位置的RD和TD方向拉伸性能差异不明显,但沿厚度方向(ND)的拉伸强度和塑性较低。在显微组织无明显差异的条件下,织构是影响TA32钛合金厚板不同位置拉伸强度的主要因素;经双重退火热处理后,显微组织形态差异是影响拉伸强度的主要因素。

关键词 TA32钛合金厚板板材显微组织织构力学性能    
Abstract

TA32 alloy is a new near α titanium alloy designed by optimizing the alloy elements ratio based on a series of elements Ti-Al-Sn-Zr-Mo-Si-Nb-Ta which has less β-stabilizing elements. This alloy has an excellent match of heat resistance and heat stability at 550 ℃, and good short-term mechanical properties at 600~650 ℃. TA32 titanium alloy thick plate can be applied to the key components in high temperature service of the hypersonic vehicle. Due to the low deformation degree of thick plate during rolling process, the heterogeneity of microstructure, texture and mechanical properties of the thick plate increases. In order to provide theoretical basis and experimental basis for the subsequent optimization of mechanical properties of TA32 titanium alloy thick plate, the microstructure, texture and mechanical properties of this alloy with a thickness of 60 mm are investigated in this work. Results show that the microstructure of the as-received material is mainly composed of lamellar α grains with few retained thin β layers, and the microstructure difference is not obvious from the surface to the center along the thickness direction of the plate no matter of the RD (rolling direction)-ND (normal direction) plane or the TD (transverse direction)-ND plane. Moreover, the rolling streamline can be obviously observed on the two planes. The morphology of α grains of the alloys presents either straight or wavy depending on their orientations with respect to the principal rolling directions. XRD results show that the as-received material has a typical T-type texture with c-axis of α phase approximately parallel to TD. At the same time, the <$10\bar{1}0$> poles are parallel to RD while <$10\bar{1}1$> poles present random distribution. As the c-axis gradually deviates from the TD of the surface to the center along the thickness direction of the plate, the Schmidt factors gradually increase, which is one of the main reasons for the gradual decrease of tensile strength; and the decrease of fraction of intragranular substructure from the surface to the center along the thickness direction is another important factor. The tensile properties have no obvious difference along the TD and RD at the same thickness position of the as-received material, but slightly worse along the ND. In addition, the influences of microstructure and texture on tensile properties are further clarified by adding two sets of heat treatment experiments (920 ℃, 30 min, AC+600 ℃, 5 h, AC; 950 ℃, 30 min, AC+600 ℃, 5 h, AC). The results show that the texture is the main factor affecting the tensile strength of TA32 titanium alloy plate at different positions under the condition of no obvious difference in microstructure. After double annealing, microstructure difference is the main factor affecting tensile strength.

Key wordsTA32 titanium alloy    thick plate    microstructure    texture    mechanical property
收稿日期: 2019-07-08     
ZTFLH:  TG146.23  
通讯作者: 陈志勇     E-mail: zhiyongchen@imr.ac.cn
Corresponding author: Zhiyong CHEN     E-mail: zhiyongchen@imr.ac.cn
作者简介: 程 超,男,1991年生,博士生

引用本文:

程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
Chao CHENG, Zhiyong CHEN, Xushan QIN, Jianrong LIU, Qingjiang WANG. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate. Acta Metall Sin, 2020, 56(2): 193-202.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00226      或      https://www.ams.org.cn/CN/Y2020/V56/I2/193

图1  TA32合金厚板板材取样方向及位置示意图
图2  TA32合金厚板板材的显微组织
图3  板材厚度截面上不同位置的极图分布
DirectionPositionRp0.2 / MPaRm / MPaA / %Z / %
TDSurface949102616.029.5
1/4941100414.019.0
1/292498212.519.5
RDSurface964103412.030.5
1/4935100213.826.0
1/291598313.823.0
ND-9209969.418.5
表1  TA32合金厚板的室温拉伸性能
图4  TA32合金厚板板材断口低倍形貌
图5  TA32合金厚板板材断口形貌的SEM像
图6  TA32钛合金微观组织
图7  TA32钛合金α相晶体形貌与晶体取向的关系
图8  α板条集束断裂过程与加载方向的关系
图9  柱面<a>滑移和基面<a>滑移的施密特Schmidt因子分布和c轴与加载方向夹角(θ)之间的关系
图10  TA32钛合金厚板表层及中心厚度处的极图及Schmidt因子分布
图11  TA32钛合金厚板表层及中心厚度处的局部取向差(LM)分析结果
图12  不同热处理条件TA32合金厚板板材TD-ND面的显微组织
图13  热处理后板材厚度截面上不同位置的(0002)极图分布
Heat treatmentPositionRp0.2 / MPaRm / MPaA / %Z / %
920 ℃, 30 min, AC+Surface934100212.028.8
600 ℃, 5 h, AC1/492799613.023.0
1/293199812.020.6
950 ℃, 30 min, AC+Surface90897617.019.1
600 ℃, 5 h, AC1/491398514.024.5
1/290797112.621.7
表2  不同热处理条件TA32合金厚板的室温拉伸性能
[1] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
[2] Peters M, Kumpfert J, Ward C H, et al. Titanium alloys for aerospace applications [J]. Adv. Eng. Mater., 2003, 5: 419
[3] Polmear I, StJohn D, Nie J F, et al. Light Alloys: Metallurgy of the Light Metals [M]. 5th Ed., Amsterdam: Elsevier Ltd., 2017: 369
[4] Nourbakhsh S, O'Brien T D. Texture formation and transition in cold-rolled titanium [J]. Mater. Sci. Eng., 1988, 100: 109
[5] Ghosh A, Singh A, Gurao N P. Effect of rolling mode and annealing temperature on microstructure and texture of commercially pure-titanium [J]. Mater. Charact., 2017, 125: 83
[6] Li W Y. Study on texture and mechanical anisotropy of Ti60 high temperature titanium alloy plates [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017
[6] (李文渊. Ti60高温钛合金板材织构及力学性能各向异性研究 [D]. 沈阳: 中国科学院金属研究所, 2017)
[7] Li W Y, Chen Z Y, Liu J R, et al. Effect of texture on anisotropy at 600 ℃ in a near-α titanium alloy Ti60 plate [J]. Mater. Sci. Eng., 2017, A688: 322
[8] Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
[9] Lan C B, Wu Y, Guo L L, et al. Microstructure, texture evolution and mechanical properties of cold rolled Ti-32.5Nb-6.8Zr-2.7Sn biomedical beta titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 788
[10] Ma Y, Du Z X, Cui X M, et al. Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets [J]. Prog. Nat. Sci.Mater. Int., 2018, 28: 711
[11] Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng., 2015, A639: 314
[12] Ghosh A, Gurao N P. Effect of crystallographic texture on ratcheting response of commercially pure titanium [J]. Mater. Des., 2017, 115: 121
[13] Manda P, Samudrala R M, Mohan M K, et al. Microstructure, texture, and mechanical properties of β solution-treated and aged metastable β titanium alloy, Ti-5Al-5Mo-5V-3Cr [J]. Metall. Mater. Trans., 2017, 48A: 4539
[14] Li D, Liu Y Y, Wan X J. On the thermal stability of Ti alloys Ⅰ. The electron concentration rule for formation of Ti3X-phase [J]. Acta Metall. Sin., 1984, 20: 375
[14] (李 东, 刘羽寅, 万晓景. 钛合金热稳定性研究Ⅰ. Ti3X相形成的电子浓度规律 [J]. 金属学报, 1984, 20: 375)
[15] Li D, Liu Y Y. On the thermal stability of Ti alloys Ⅱ. The behaviour of transition elements in Ti3X-phase formation [J]. Acta Metall. Sin., 1984, 20: 384
[15] (李 东, 刘羽寅. 钛合金热稳定性研究Ⅱ. 过渡族元素在Ti3X相形成中的行为 [J]. 金属学报, 1984, 20: 384)
[16] Li D, Wan X J. On the thermal stability of Ti alloys Ⅲ. The criterion for thermal stability and its application [J]. Acta Metall. Sin., 1984, 20: 391
[16] (李 东, 万晓景. 钛合金热稳定性研究Ⅲ. 热稳定性判据及其应用 [J]. 金属学报, 1984, 20: 391)
[17] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
[17] (王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学, 2014, 34(4): 1)
[18] Lütjering G, Williams J C. Titanium [M]. Heidelberg, Berlin: Springer, 2007:1
[19] Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Measurement Technology [M]. Beijing: Metallurgical Industry Press, 2008: 47
[19] (毛卫民, 杨 平, 陈 冷. 材料织构分析原理与检测技术 [M]. 北京: 冶金工业出版社, 2008: 47)
[20] Roy S, Suwas S. Microstructure and texture evolution during sub-transus thermomechanical processing of Ti-6Al-4V-0.1B alloy: Part I. Hot rolling in (α+β) phase field [J]. Metall. Mater. Trans., 2013, 44A: 3303
[21] Roy S, Suwas S. Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of Ti-6Al-4V alloy [J]. Acta Mater., 2017, 134: 283
[22] Bieler T R, Semiatin S L. The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V [J]. Int. J. Plast., 2002, 18: 1165
[23] Mironov S, Murzinova M, Zherebtsov S, et al. Microstructure evolution during warm working of Ti-6Al-4V with a colony-α microstructure [J]. Acta Mater., 2009, 57: 2470
[24] Yang Y, Huang A J, Xu F, et al. Room-temperature tensile plasticity of BT18y titanium alloy with equiaxed structure and fully lamellar structure [J]. Chin. J. Nonferrous Met., 2005, 15: 768
[24] (杨 义, 黄爱军, 徐 峰等. BT18y钛合金等轴组织与全片层组织的室温拉伸塑性 [J]. 中国有色金属学报, 2005, 15: 768)
[25] Won J W, Park K T, Hong S G, et al. Anisotropic yielding behavior of rolling textured high purity titanium [J]. Mater. Sci. Eng., 2015, A637: 215
[26] Won J W, Park C H, Hong S G, et al. Deformation anisotropy and associated mechanisms in rolling textured high purity titanium [J]. J. Alloys Compd., 2015, 651: 245
[27] Liu Z, Liu J R, Zhao Z B, et al. Microstructure and tensile property of TC4 alloy produced via electron beam rapid manufacturing [J]. Acta Metall. Sin., 2019, 55: 692
[27] (刘 征, 刘建荣, 赵子博等. 电子束快速成形制备TC4合金的组织和拉伸性能分析 [J]. 金属学报, 2019, 55: 692)
[28] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555
[29] Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[13] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[14] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[15] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.