|
|
不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响 |
张茂龙1,2, 鲁艳红1, 陈胜虎3, 戎利建3( ), 陆皓2 |
1 上海电气核电设备有限公司 上海 201306 2 上海交通大学材料科学与工程学院 上海 200240 3 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Effect of Dilution Ratio of the First 309L Cladding Layer on the Microstructure and Mechanical Properties of Weld Joint of Connecting Pipe-Nozzle to Safe-End in Nuclear Power Plant |
ZHANG Maolong1,2, LU Yanhong1, CHEN Shenghu3, RONG Lijian3( ), LU Hao2 |
1 Shanghai Electric Nuclear Power Equipment Co. Ltd. , Shanghai 201306, China 2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 3 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066.
Maolong ZHANG,
Yanhong LU,
Shenghu CHEN,
Lijian RONG,
Hao LU.
Effect of Dilution Ratio of the First 309L Cladding Layer on the Microstructure and Mechanical Properties of Weld Joint of Connecting Pipe-Nozzle to Safe-End in Nuclear Power Plant[J]. Acta Metall Sin, 2020, 56(8): 1057-1066.
[1] |
Dai P K. Materials and Welding of the Main Equipment in Pressurized Water Reactor [M]. Shanghai: Shanghai Scientific and Technological Literature Press, 2008: 227
|
[1] |
(戴佩琨. 压水堆核电站核岛主设备材料和焊接 [M]. 上海: 上海科学技术文献出版社, 2008: 227)
|
[2] |
Li G F, Yang W. Cracking of dissimilar metal welds in nuclear power plants and methods to evaluate its susceptibility to stress corrosion cracking [J]. Nucl. Saf., 2003, (2): 37
|
[2] |
(李光福, 杨 武. 核电站异材焊接件的破裂问题与应力腐蚀评价方法 [J]. 核安全, 2003, (2): 37)
|
[3] |
Lundin C D. Dissimilar metal welds—Transition joints literature review [J]. Weld. Res. Suppl., 1982, 61: 58
|
[4] |
Liu Z Q, Liu K. Guide for Welding of Dissimilar Metals [M]. Beijing: China Machine Press, 1997: 7
|
[4] |
(刘中青, 刘 凯. 异种金属焊接技术指南 [M]. 北京: 机械工业出版社, 1997: 7)
|
[5] |
Ding J, Zhang Z M, Wang J Q, et al. Micro-characterization of dissimilar metal weld joint for connecting pipe-nozzle to safe-end in Generation III nuclear power plant [J]. Acta Metall. Sin., 2015, 51: 425
doi: 10.11900/0412.1961.2014.00299
|
[5] |
(丁 杰, 张志明, 王俭秋等. 三代核电接管安全端异种金属焊接接头的显微表征 [J]. 金属学报, 2015, 51: 425)
doi: 10.11900/0412.1961.2014.00299
|
[6] |
Li G F, Li G J, Fang K W, et al. Stress corrosion cracking behavior of dissimilar metal weld A508/52M/316L in high temperature water environment [J]. Acta Metall. Sin., 2011, 47: 797
doi: 10.3724/SP.J.1037.2011.00316
|
[6] |
(李光福, 李冠军, 方可伟等. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂 [J]. 金属学报, 2011, 47: 797)
doi: 10.3724/SP.J.1037.2011.00316
|
[7] |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
|
[7] |
(明洪亮, 张志明, 王俭秋等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 57)
doi: 10.11900/0412.1961.2016.00135
|
[8] |
Xiong Q, Li H J, Lu Z P, et al. Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water [J]. J. Nucl. Mater., 2018, 498: 227
doi: 10.1016/j.jnucmat.2017.10.030
|
[9] |
Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 ℃ [J]. Corros. Sci., 2000, 42: 1005
doi: 10.1016/S0010-938X(99)00131-6
|
[10] |
Wang H T, Wang G Z, Xuan F Z, et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant [J]. Eng. Fail. Anal., 2013, 28: 134
doi: 10.1016/j.engfailanal.2012.10.005
|
[11] |
Joseph A, Rai S K, Jayakumar T, et al. Evaluation of residual stresses in dissimilar weld joints [J]. Int. J. Press. Vessels Pip., 2005, 82: 700
doi: 10.1016/j.ijpvp.2005.03.006
|
[12] |
Wang H T, Wang G Z, Xuan F Z, et al. Local fracture behavior in an alloy 52M dissimilar metal welded joint in nuclear power plants [J]. Nucl. Tech., 2013, 36(4): 040628
|
[12] |
(王海涛, 王国珍, 轩福贞等. 核电52M镍基合金异种金属焊接接头的局部断裂行为 [J]. 核技术, 2013, 36(4): 040628)
|
[13] |
Ming H L, Zhu R L, Zhang Z M, et al. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW [J]. Mater. Sci. Eng., 2016, A669: 279
|
[14] |
Sireesha M, Albert S K, Shankar V, et al. A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800 [J]. J. Nucl. Mater., 2000, 279: 65
doi: 10.1016/S0022-3115(99)00275-5
|
[15] |
Santosh R, Das S K, Das G, et al. Three-dimensional thermomechanical simulation and experimental validation on failure of dissimilar material welds [J]. Metall. Mater. Trans., 2016, 47A: 3511
|
[16] |
Lei F, Tan J H, Xu C J. Studies on the shedding behavior of the surfacing layer on the inner wall of the safety and nozzle of the steam generator nozzle [J]. Technol. Innov. App., 2019, (5): 49
|
[16] |
(雷 凡, 谭晶华, 许春军. 蒸汽发生器下封头接管内壁堆焊层脱落问题的研究 [J]. 科技创新与应用, 2019, (5): 49)
|
[17] |
Lu Y H, Zhang M L, Tang W B, et al. Research on microstructure evolution and interfacial disbonding mechanism during dissimilar weld between 18MND5 and 309L [J]. Press. Vessel Technol., 2017, 34(9): 21
|
[17] |
(鲁艳红, 张茂龙, 唐伟宝等. 18MND5/309L焊接过程中组织演变以及界面剥离机理研究 [J]. 压力容器, 2017, 34(9): 21)
|
[18] |
Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
|
[19] |
Kotecki D J, Siewert T A. WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram [J]. Weld. Res. Suppl., 1992, 71: 171s
|
[20] |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint [J]. Mater. Charact., 2014, 97: 101
doi: 10.1016/j.matchar.2014.08.023
|
[21] |
Dupont J N, Kusko C S. Technical note: Martensite formation in austenitic/ferritic dissimilar alloy welds [J]. Weld. Res., 2007, 86: 51s
|
[22] |
Chung W C, Huang J Y, Tsay L W, et al. Microstructure and stress corrosion cracking behavior of the weld metal in alloy 52-A508 dissimilar welds [J]. Mater. Trans., 2011, 52: 12
doi: 10.2320/matertrans.M2010294
|
[23] |
Wang Q Y, Chen S H, Rong L J. δ-Ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
|
[24] |
Azuma M, Goutianos S, Hansen N, et al. Effect of hardness of martensite and ferrite on void formation in dual phase steel [J]. Mater. Sci. Technol., 2012, 28: 1092
|
[25] |
Jin X J, Chen S H, Rong L J. Effect of Fe2Zr phase on the mechanical properties and fracture behavior of Fe-Cr-W-Zr ferritic alloy [J]. Mater. Sci. Eng., 2018, A722: 173
|
[26] |
Feng G C. Affecting factors of the dilution rate during buttering deposition and its controlling methods [J]. Weld. Technol., 1996, (1): 22
|
[26] |
(冯国昌. 堆焊稀释率的影响因素和控制措施 [J]. 焊接技术, 1996, (1): 22)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|