Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 880-890    DOI: 10.11900/0412.1961.2020.00352
  研究论文 本期目录 | 过刊浏览 |
热变形参数对TC18钛合金β相组织及织构演变规律的影响
颜孟奇1(), 陈立全2, 杨平2, 黄利军1, 佟健博1, 李焕峰1, 郭鹏达1
1.中国航发北京航空材料研究院 北京 100095
2.北京科技大学 材料科学与工程学院 北京 100083
Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy
YAN Mengqi1(), CHEN Liquan2, YANG Ping2, HUANG Lijun1, TONG Jianbo1, LI Huanfeng1, GUO Pengda1
1.AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
Mengqi YAN, Liquan CHEN, Ping YANG, Lijun HUANG, Jianbo TONG, Huanfeng LI, Pengda GUO. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. Acta Metall Sin, 2021, 57(7): 880-890.

全文: PDF(39691 KB)   HTML
摘要: 

利用SEM及EBSD技术,研究热变形参数(变形方式、变形温度、变形量、应变速率、保温时间)对TC18钛合金β相组织及织构演变规律的影响。结果表明,TC18钛合金在热压缩及两相区热拉伸时,β相均以动态回复为主。在热压缩后,主要形成{100}及{111}织构,在热拉伸后,主要形成{110}织构;在单相区压缩时,随着变形温度升高、变形量提高、应变速率降低,{100}织构比例提高、{111}织构比例降低;在两相区压缩时,随着变形温度升高、变形量提高,{100}织构比例提高、{111}织构比例降低;在两相区拉伸时,随着变形量提高,{110}织构比例逐渐提高。

关键词 TC18钛合金热变形组织织构β    
Abstract

Titanium alloys have the advantages of high specific strength, fatigue resistance, and corrosion resistance. Also, they are widely used in the aviation, aerospace, weapons, petroleum, and chemical industries and other fields. The use of large-scale and integrated aviation forgings, which are an important development in titanium alloy manufacturing technology, can increase the service life, safety and reliability of aircraft structures and engines, and simultaneously reduce their structural weight and shorten their manufacturing cycle. However, problems such as a decline in mechanical properties and the presence of abnormal low-magnification structures due to the strong β phase texture have gradually been revealed. For example, large-size near-β titanium alloy bars often have the problem of coarse and uneven macrostructures, and the center layer of these bars tend to form a strong {100} β phase texture. These defects are easily inherited in the forgings, which adversely affect their performance and threaten their safe use. In this work, 300 mm diameter TC18 titanium alloy bars were used as the research material. The SEM and EBSD techniques were used to study the microstructure and texture characteristics of the β phase after thermal deformation, respectively. This work compared the influence of the thermal deformation parameters (compression/stretching, deformation temperature, reduction, strain rate, and holding time) on the evolution of the β phase microstructure and texture in the TC18 titanium alloy. Also, the deformation, dynamic recovery, dynamic recrystallization, and grain growth behavior of the β phase were investigated. The results showed that when the TC18 titanium alloy was compressed and stretched in the two-phase region, the β phase was mainly dynamic recovery. After thermal compression, the {100} and the {111} textures were mainly formed, while after thermal stretching, the {110} texture was mainly formed. When it was compressed in the β phase region, as the deformation temperature increased, the reduction increased, the strain rate decreased, the strength of the {100} texture increased and the {111} texture decreased. When it was compressed in the two-phase region, as the deformation temperature increased and the reduction increased, the strength of the {100} texture increased and the {111} texture decreased. When it was stretched in the two-phase region, as the reduction increased, the strength of the {110} texture gradually increased.

Key wordsTC18 titanium alloy    hot deformation    microstructure    texture    β phase
收稿日期: 2020-09-08     
ZTFLH:  TG113.12  
作者简介: 颜孟奇,男,1985年生,高级工程师,博士
Deformation modeTemperature / oCReduction / %Strain rate / s-1Holding time / min
Compression770, 820, 840, 890, 920, 97030, 50, 700.01, 0.1, 1, 1015, 30, 45
Stretching770, 840, 890, 92025, 35, 60, 1000.115
表1  热模拟实验中使用的热变形参数
图1  直径300 mm TC18钛合金棒材横截面心部组织的SEM像
图2  直径300 mm TC18钛合金棒材横截面心部β相的组织及织构特征
图3  TC18钛合金在不同变形温度保温15 min、变形量50%、应变速率0.1 s-1条件下压缩后β相的取向分布图
图4  TC18钛合金在不同温度保温15 min、变形量50%、应变速率0.1 s-1条件下压缩后β相的回复再结晶
图5  TC18钛合金在840和890℃保温15 min、0.1 s-1应变速率条件下不同变形量压缩后β相的取向分布图
图6  TC18钛合金在840和890℃保温15 min、应变速率0.1 s-1条件下不同变形量压缩后β相的回复再结晶
图7  TC18钛合金在840和890℃保温15 min、变形量50%条件下不同应变速率压缩后β相的取向分布图
图8  TC18钛合金在840和890℃保温15 min、变形量50%条件下不同应变速率压缩后β相的回复再结晶
图9  TC18钛合金在840和890℃保温不同时间、变形量50%、应变速率0.1 s-1条件下压缩后β相的取向分布图
图10  TC18钛合金在840和890℃保温不同时间、变形量50%、应变速率0.1 s-1条件下压缩后β相的回复再结晶
图11  TC18钛合金在不同温度保温15 min、变形量25%、应变速率0.1 s-1条件下拉伸后β相的取向分布图
图12  TC18钛合金在不同温度保温15 min、变形量25%、应变速率0.1 s-1条件下拉伸后β相的回复再结晶
图13  TC18钛合金在840℃保温15 min、应变速率0.1 s-1条件下不同变形量拉伸后β相的取向分布图
图14  TC18钛合金在840℃保温15 min、应变速率0.1 s-1条件下不同变形量拉伸后β相的回复再结晶
1 Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Application [M]. Beijing: Chemical Industry Press, 2005: 1
1 张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1
2 Huang X, Zhu Z S, Wang H H. Advanced Aeronautical Titanium Alloys and Applications [M]. Beijing: National Defence Industry Press, 2012: 1
2 黄 旭, 朱知寿, 王红红. 先进航空钛合金材料与应用 [M]. 北京: 国防工业出版社, 2012: 1
3 Zhu Z S. Recent research and development of titanium alloys for aviation application in China [J]. J. Aeron. Mater., 2014, 34(4): 44
3 朱知寿. 我国航空用钛合金技术研究现状及发展 [J]. 航空材料学报, 2014, 34(4): 44
4 Li P C. Production status and development trend of heavy aviation die forging [J]. Heavy Cast. Forg., 2011, (2): 39
4 李蓬川. 大型航空模锻件的生产现状及发展趋势 [J]. 大型铸锻件, 2011, (2): 39
5 Wang S Y, Li H Q, Dong Y P, et al. Development of large single-piece forgings and heavy forging presses in aerospace forging industry [J]. China Metalform. Equip. Manuf. Technol., 2009, 44: 31
5 王淑云, 李惠曲, 东赟鹏等. 大型模锻件和模锻液压机与航空锻压技术 [J]. 锻压装备与制造技术, 2009, 44: 31
6 Zhang Y Q, Guo H Z, Sun H L, et al. Effect of heat treatment on microstructure and mechanical properties of TC18 alloy [J]. Mater. Heat Treat., 2012, 41(6): 147
6 张永强, 郭鸿镇, 孙红兰等. 热处理对TC18合金显微组织和力学性能的影响 [J]. 材料热处理技术, 2012, 41(6): 147
7 Glavicic M G, Goetz R L, Barker D R, et al. Modeling of texture evolution during hot forging of alpha/beta titanium alloys [J]. Metall. Mater. Trans., 2008, 39A: 1759
8 Yan M Q, Sha A X, Zhang W F, et al. Recovery and recrystallization behavior of large sized β phase grains in TC18 titanium alloy during annealing process [J]. Mater. Sci. Forum, 2015, 817: 263
9 Li K, Yang P, Sha A X, et al. Investigation of microstructure and texture of β phase in a forged TC18 titanium alloy bar [J]. Acta Metall. Sin., 2014, 50: 707
9 李 凯, 杨 平, 沙爱学等. 锻态TC18钛合金棒材中β相组织和织构特征研究 [J]. 金属学报, 2014, 50: 707
10 Yan M Q, Zhang Y Q, Li K, et al. Analysis of bright band formation in Ti-55531 titanium alloy forging [J]. Chin. J. Rare Met., 2016, 40: 534
10 颜孟奇, 张业勤, 李 凯等. Ti-55531钛合金自由锻件亮带形成原因分析 [J]. 稀有金属, 2016, 40: 534
11 Feng X, Yan C Y, Guo H Z, et al. Research on improving structure uniformity of titanium alloy in open-die forging [J]. Hot Work. Technol., 2010, 39(23): 132
11 冯 霞, 严昌永, 郭鸿镇等. 改善钛合金自由锻件组织均匀性的研究 [J]. 热加工工艺, 2010, 39(23): 132
12 Yao Z K, Guo H Z, Zou Y H, et al. Method of improving structure uniformity of big size titanium open-die forgings [J]. Forg. Stamp. Technol., 2005, 30(5): 4
12 姚泽坤, 郭鸿镇, 邹永恒等. 改善大尺寸钛合金自由锻件组织均匀性的方法 [J]. 锻压技术, 2005, 30(5): 4
13 Xue S, Zhou J, Xiong Y S, et al. Study on microstructure control and mechanical property TA15 alloy large-scale whole frame die forging [J]. Hot Work. Technol., 2011, 40(15): 19
13 薛 松, 周 杰, 熊运森等. TA15钛合金大型整框模锻件组织控制及性能研究 [J]. 热加工工艺, 2011, 40(15): 19
14 Obasi G C, Birosca S, da Fonseca J Q, et al. Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
15 Obasi G C, da Fonseca J Q, Rugg D, et al. The effect of β grain coarsening on variant selection and texture evolution in a near-β Ti alloy [J]. Mater. Sci. Eng., 2013, A576: 272
16 Semiatin S L, Fagin P N, Glavicic M G, et al. Influence on texture on beta grain growth during continuous annealing of Ti-6Al-4V [J]. Mater. Sci. Eng., 2011, A299: 225
17 Markovsky P E, Matviychuk Y V, Bondarchuk V I. Influence of grain size and crystallographic texture on mechanical behavior of TIMETAL-LCB in metastable β-condition [J]. Mater. Sci. Eng., 2013, A559: 782
18 Yan M Q, Sha A X, Li K, et al. Effect of annealing temperature on microstructure and texture evolution of TC18 titanium alloy [J]. Rare Met. Mater. Eng., 2017, 46(suppl.1): 156
18 颜孟奇, 沙爱学, 李 凯等. 退火温度对TC18钛合金组织及织构演变规律的影响 [J]. 稀有金属材料与工程, 2017, 46(): 156
19 Li C M, Li P, Zhao M, et al. Mechanical behavior and microstructure of TA15 titanium alloy during hot compressive deformation [J]. J. Aeron. Mater., 2013, 33(3): 25
19 李成铭, 李 萍, 赵 蒙等. TA15钛合金高温压缩变形行为与组织研究 [J]. 航空材料学报, 2013, 33(3): 25
20 Li C M, Li P, Zhao M, et al. Microstructures and textures of TA15 titanium alloy after hot deformation [J]. Chin. J. Nonferrous Met., 2014, 24: 91
20 李成铭, 李 萍, 赵 蒙等. TA15钛合金的热变形微观组织与织构 [J]. 中国有色金属学报, 2014, 24: 91
21 Yao P P, Li P, Xue K M, et al. Microstructure evolution of thermal deformation TA15 titanium alloy under β phase region heating institution [J]. Chin. J. Nonferrous Met., 2014, 24: 2482
21 姚彭彭, 李 萍, 薛克敏等. β相区加热TA15钛合金热变形显微组织演化 [J]. 中国有色金属学报, 2014, 24: 2482
22 Babaréko A A, Belova O S, Kopylov V N, et al. Dynamic recrystallization of beta-phase in titanium alloy [J]. Met. Sci. Heat Treat., 1991, 33: 703
23 Tan M J, Chen G W, Thiruvarudchelvan S. High temperature deformation in Ti-5Al-2.5Sn alloy [J]. J. Mater. Process. Technol., 2007, 192-193: 434
24 Kubiak K, Ziaja W, Sieniawski J. Investigation of dynamic recrystallization in two-phase titanium alloy Ti-6Al-4V [J]. J. Mater. Process. Technol., 2000, 28: 93
25 Zhao Y H, Ge P, Yang G J, et al. Forging simulation of Ti-1300 alloy by hot compressing testing [J]. Rare Met. Mater. Eng., 2009, 38: 550
25 赵映辉, 葛 鹏, 杨冠军等. Ti-1300合金锻造加工的热压缩模拟 [J]. 稀有金属材料与工程, 2009, 38: 550
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[10] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[11] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[14] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[15] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.