Please wait a minute...
金属学报  2022, Vol. 58 Issue (2): 225-230    DOI: 10.11900/0412.1961.2020.00497
  研究论文 本期目录 | 过刊浏览 |
铀基非晶复合材料的相分离与凝固序列研究
张雷, 施韬(), 黄火根, 张培, 张鹏国, 吴敏, 法涛
中国工程物理研究院材料研究所 江油 621907
Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites
ZHANG Lei, SHI Tao(), HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
引用本文:

张雷, 施韬, 黄火根, 张培, 张鹏国, 吴敏, 法涛. 铀基非晶复合材料的相分离与凝固序列研究[J]. 金属学报, 2022, 58(2): 225-230.
Lei ZHANG, Tao SHI, Huogen HUANG, Pei ZHANG, Pengguo ZHANG, Min WU, Tao FA. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. Acta Metall Sin, 2022, 58(2): 225-230.

全文: PDF(1508 KB)   HTML
摘要: 

用TEM、SEM等对U30.03Zr28.83Ti9.66Ni7.00Cu8.75Be15.73铀基非晶复合材料的微观结构和成分分布进行了表征,发现该复合材料是α-U相和以Zr、Ti为主的非晶相的双相复合材料,其中两相均以球形析出相的方式构成多层次嵌套结构。复合材料在降温过程中,首先发生以形核-长大机制为主的U、Cu两相的相分离,其他合金元素再根据混合焓择优分布;随后的凝固过程为α-U凝固相变与非晶转变的两步过程,并在非晶为球形析出相的区域形成具有过渡层的特殊结构。这些结果为非晶复合材料的成分设计和热处理工艺的调整提供了新思路。

关键词 铀合金复合材料相分离凝固序列    
Abstract

The microstructure and composition distribution of U30.03Zr28.83Ti9.66Ni7.00Cu8.75Be15.73 uranium-based amorphous composites were characterized using TEM and SEM in this study. The composite is a biphasic composite of α-U and amorphous phases dominated by zirconium and titanium. Both phases form a multilevel nested structure in the form of spherical precipitated phases. During cooling of the composite material, the phase separation of uranium and copper phases dominated by the nucleation-growth mechanism occurs first, and the other alloying elements are then preferably distributed according to the mixing enthalpy. The subsequent solidification is a two-step process: α-U solidification and amorphous transformation. A special structure with a transition layer is formed in the area where the amorphous phase is the spherical precipitated phase. These results provide new insights for the composition design and heat treatment adjustment of amorphous composite materials.

Key wordsuranium alloy    composite material    phase separation    solidification sequence
收稿日期: 2020-12-09     
ZTFLH:  TB331  
基金资助:国家重点研发计划项目(2016YFB0700403);国家自然科学基金项目(51701191);基础加强计划项目(JCJQ20190415);中国工程物理研究院规划项目(TCGH071601)
作者简介: 张 雷,男,1984年生,博士
图1  铀基复合材料的微观形貌(a) SEM image (b) high-angle annular dark field (HAADF) image of the sample prepared by focus ion beam (FIB)
图2  图1a中区域A的TEM分析(a) TEM image of the overall morphology (b, c) SAED patterns, EDS and electron energy loss spectroscopy (EELS) of the spherical particles (b) and the matrix (c)
图3  图1a中区域B的TEM分析(a) TEM image of the overall morphology (b, c) SAED patterns, EDS and EELS of the spherical particles (b) and the matrix (c)
图4  溶解度间隙与相分离机制关系示意图
图5  U-Cu二元合金相图[33]
ElementUBeTiNiCuZr
U--390-29-7-3
Be-39--30-40-43
Ti0-30--35-90
Ni-29-4-35-4-49
Cu-70-94--23
Zr-3-430-49-23-
表1  不同元素间的混合焓[34] (kJ·mol-1)
图6  区域A与区域B的凝固过程示意图
1 Li G X , Wu S . Nuclear Fuels [M]. Beijing: Chemical Industry Press, 2007: 13
1 李冠兴, 武 胜 . 核燃料 [M]. 北京: 化学工业出版社, 2007: 13
2 Paukov M , Tkach I , Huber F , et al . U-Zr alloy: XPS and TEM study of surface passivation [J]. Appl. Surf. Sci., 2018, 441: 113
3 Banos A , Harker N J , Scott T B . A review of uranium corrosion by hydrogen and the formation of uranium hydride [J]. Corros. Sci., 2018, 136: 129
4 Bazley S G , Petherbridge J R , Glascott J . The influence of hydrogen pressure and reaction temperature on the initiation of uranium hydride sites [J]. Solid State Ionics, 2012, 211: 1
5 Sowa S , Kim-Ngan N T H , Krupska M , et al . Structure and properties of U alloys with selected d-metals and their hydrides [J]. Physica, 2018, 536B: 546
6 Li F F , Lu L , Meng X D , et al . An enhanced hydrogen corrosion by the Ti(C,N) inclusions in U-0.79 wt%Ti alloy [J]. J. Alloys Compd., 2020: 820: 153124
7 Beevers C J , Newman G T . Hydrogen embrittlement in uranium [J]. J. Nucl. Mater., 1967, 23: 10
8 Ji H F , Chen X L , Shi P , et al . The effects of microstructure on the hydriding for 500oC/2 h aged U-13at.%Nb alloy [J]. J. Nucl. Mater., 2017, 488: 252
9 Taylor C D , Lillard R S . Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping [J]. Acta Mater., 2009, 57: 4707
10 Taylor C D , Lookman T , Lillard R S . Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3 [J]. Acta Mater., 2010, 58: 1045
11 Jones C P , Scott T B , Petherbridge J R , et al . A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure [J]. Solid State Ionics, 2013, 231: 81
12 Kaltenboeck G , Demetriou M D , Roberts S , et al . Shaping metallic glasses by electromagnetic pulsing [J]. Nat. Commun., 2016, 7: 10576
13 Wang W H . The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
13 汪卫华 . 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
14 Chen M W . A brief overview of bulk metallic glasses [J]. NPG Asia Mater., 2011, 3: 82
15 Schuh C A , Hufnagel T C , Ramamurty U . Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
16 Huang H G , Wang Y M , Chen L , et al . Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta Metall. Sin., 2015, 51: 623
16 黄火根, 王英敏, 陈 亮 等 . U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
17 Huang H G , Ke H B , Wang Y M , et al . Stable U-based metallic glasses [J]. J. Alloys Compd., 2016, 684: 75
18 Xu H Y , Ke H B , Huang H G , et al . U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
19 Huang H G , Xu H Y , Zhang P G , et al . U-Cr binary alloys with anomalous glass-forming ability [J]. Acta Metall. Sin., 2017, 53: 233
19 黄火根, 徐宏扬, 张鹏国 等 . 具有反常非晶形成能力的U-Cr二元合金 [J]. 金属学报, 2017, 53: 233
20 Elliott R O , Giessen B C . On the formation of metallic glasses based on U, Np or Pu [J]. Acta Metall., 1982, 30: 785
21 Drehman A J , Poon S J . Anomalous glass-forming ability of uranium-based alloys [J]. J. Non-Cryst. Solids, 1985, 76: 321
22 Qiao J W , Jia H L , Liaw P K . Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, R100: 1
23 Telford M . The case for bulk metallic glass [J]. Mater. Today, 2004, 7: 36
24 Peker A , Johnson W L . A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
25 Huang H G , Ke H B , Zhang P , et al . U-involved sphere-dispersed metallic glass matrix composites [J]. Mater. Des., 2018, 157: 371
26 Kim D H , Kim W T , Park E S , et al . Phase separation in metallic glasses [J]. Prog. Mater. Sci., 2013, 58: 1103
27 Chen H S . Glass temperature, formation and stability of Fe, Co, Ni, Pd and Pt based glasses [J]. Mater. Sci. Eng., 1976, 23: 151
28 Liu Z G , Wu X J , Chen Y , et al . Heterogeneity in Fe82.3Ni1.7B16 glass [J]. J. Non-Cryst. Solids, 1989, 109: 262
29 Kharkov E I , Lysov V I , Ishchenko A M . The relation of high-temperature stability of amorphous alloys with nucleation and growth of the crystalline phases [J]. J. Non-Cryst. Solids, 1990, 117-118: 244
30 Walter J L , Bacon F , Luborsky F E . An Auger analysis of the embrittlement of the amorphous alloy Ni40Fe40P14B6 [J]. Mater. Sci. Eng., 1976, 24: 239
31 Freed R L , Sande J B V . A study of the crystallization of two non-crystalline Cu-Zr alloys [J]. J. Non-Cryst. Solids, 1978, 27: 9
32 Oh J C , Ohkubo T , Kim Y C , et al . Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass [J]. Scr. Mater., 2005, 53: 165
33 Wilkinson W D . Uranium Metallurgy. Volume II: Uranium Corrosion and Alloys [M]. New York: Interscience Publishers, 1962: 1414
34 De Boer F R , Boom R , Mattens W C M . Cohesion in Metals: Transition Metal Alloys [M]. Amsterdam: North Holland, 1988: 133, 314, 375
[1] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[2] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[5] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[6] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[7] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[8] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[9] 聂金凤, 伍玉立, 谢可伟, 刘相法. Al-AlN异构纳米复合材料的组织构型与热稳定性[J]. 金属学报, 2022, 58(11): 1497-1508.
[10] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[12] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[13] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[14] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[15] 王文权, 王苏煜, 陈飞, 张新戈, 徐宇欣. 选区激光熔化成形TiN/Inconel 718复合材料的组织和力学性能[J]. 金属学报, 2021, 57(8): 1017-1026.