|
|
核电站DMWJ中材料拘束的影响与优化 |
杨杰( ), 王雷 |
上海理工大学能源与动力工程学院上海市动力工程多相流动与传热重点实验室 上海 200093 |
|
Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants |
YANG Jie( ), WANG Lei |
Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China |
引用本文:
杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
Jie YANG,
Lei WANG.
Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. Acta Metall Sin, 2020, 56(6): 840-848.
[1] |
Li J, Wu X Q, Han E H, et al. A review of corrosion failure of welded structural metallic materials for light water reactor plant [J]. Corros. Sci. Prot. Technol., 2014, 26: 1
|
[1] |
李 江, 吴欣强, 韩恩厚等. 核电焊接结构材料腐蚀失效研究现状与进展 [J]. 腐蚀科学与防护技术, 2014, 26: 1
|
[2] |
Celin R, Tehovnik F. Degradation of a Ni-Cr-Fe alloy in a pressurised-water nuclear power plant [J]. Mater. Technol., 2011, 45: 151
|
[3] |
Ogawa T, Itatani M, Saito T, et al. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy [J]. Int. J. Press. Vessels Pip., 2012, 90-91: 61
|
[4] |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructure of a domestically fabricated dissimilar metal weld joint (SA508-52M-309L-CF8A) in nuclear power plant [J]. Mater. Charact., 2019, 148: 100
doi: 10.1016/j.matchar.2018.12.011
|
[5] |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW [J]. Mater. Charact., 2017, 123: 233
doi: 10.1016/j.matchar.2016.11.029
|
[6] |
Ming H L, Zhu R L, Zhang Z M, et al. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW [J]. Mater. Sci. Eng., 2016, A669: 279
|
[7] |
Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
|
[7] |
明洪亮, 张志明, 王俭秋等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
|
[8] |
Dong L J, Peng Q J, Han E H, et al. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34: 1281
doi: 10.1016/j.jmst.2017.11.051
|
[9] |
Dong L J, Peng Q J, Xue H, et al. Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment [J]. Corros. Sci., 2018, 132: 9
|
[10] |
Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems [J]. Mater. Sci. Eng., 2013, A568: 108
|
[11] |
Wang H T, Wang G Z, Xuan F Z, et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant [J]. Eng. Fail. Anal., 2013, 28: 134
doi: 10.1016/j.engfailanal.2012.10.005
|
[12] |
Blouin A, Chapuliot S, Marie S, et al. Brittle fracture analysis of dissimilar metal welds [J]. Eng. Fract. Mech., 2014, 131: 58
doi: 10.1016/j.engfracmech.2014.07.005
|
[13] |
Chen Z R, Lu Y H. TEM observation of martensite layer at the weld interface of an A508III to inconel 82 dissimilar metal weld joint [J]. Metall. Mater. Trans., 2015, 46A: 5494
|
[14] |
Chen Z R, Lu Y H, Ding X F, et al. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal [J]. Mater. Charact., 2016, 121: 166
|
[15] |
Jahanzeb N, Shin J H, Singh J, et al. Effect of microstructure on the hardness heterogeneity of dissimilar metal joints between 316L stainless steel and SS400 steel [J]. Mater. Sci. Eng., 2017, A700: 338
|
[16] |
Wang H T, Wang G Z, Xuan F Z, et al. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint [J]. Mater. Des., 2013, 44: 179
|
[17] |
Samal M K, Seidenfuss M, Roos E, et al. Investigation of failure behavior of ferritic-austenitic type of dissimilar steel welded joints [J]. Eng. Fail. Anal., 2011, 18: 999
doi: 10.1016/j.engfailanal.2010.12.011
|
[18] |
Fan K, Wang G Z, Xuan F Z, et al. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2015, 136: 279
doi: 10.1016/j.engfracmech.2015.02.007
|
[19] |
Chhibber R, Arora N, Gupta S R, et al. Use of bimetallic welds in nuclear reactors: Associated problems and structural integrity assessment issues [J]. Proc. Inst. Mech. Eng., 2006, 220C: 1121
|
[20] |
Laukkanen A, Nevasmaa P, Ehrnstén U, et al. Characteristics relevant to ductile failure of bimetallic welds and evaluation of transferability of fracture properties [J]. Nucl. Eng. Des., 2007, 237: 1
doi: 10.1016/j.nucengdes.2006.03.022
|
[21] |
Shang Y B, Shi H J, Wang Z X, et al. In-situ SEM study of short fatigue crack propagation behavior in a dissimilar metal welded joint of nuclear power plant [J]. Mater. Des., 2015, 88: 598
|
[22] |
Kim Y J, Kim J S, Cho S M, et al. 3-D constraint effects on J testing and crack tip constraint in M(T), SE(B), SE(T) and C(T) specimens: Numerical study [J]. Eng. Fract. Mech., 2004, 71: 1203
|
[23] |
Østby E, Thaulow C, Zhang Z L. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part I: Tearing resistance and crack growth paths [J]. Eng. Fract. Mech., 2007, 74: 1770
|
[24] |
Østby E, Thaulow C, Zhang Z L. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part II: Near-tip stress fields [J]. Eng. Fract. Mech., 2007, 74: 1793
|
[25] |
Yang J, Wang G Z, Xuan F Z, et al. An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint [J]. Mater. Des., 2014, 53: 611
|
[26] |
Yang J, Wang G Z, Xuan F Z, et al. Out-of-plane constraint effect on local fracture resistance of a dissimilar metal welded joint [J]. Mater. Des., 2014, 55: 542
doi: 10.1016/j.matdes.2013.10.034
|
[27] |
Yang J, Wang L. Fracture mechanism of cracks in the weakest location of dissimilar metal welded joint under the interaction effect of in-plane and out-of-plane constraints [J]. Eng. Fract. Mech., 2018, 192: 12
|
[28] |
Zhang Z L, Hauge M, Thaulow C. Two-parameter characterization of the near-tip stress fields for a bi-material elastic-plastic interface crack [J]. Int. J. Fract., 1996, 79: 65
|
[29] |
Betegón C, Peñuelas I. A constraint based parameter for quantifying the crack tip stress fields in welded joints [J]. Eng. Fract. Mech., 2006, 73: 1865
doi: 10.1016/j.engfracmech.2006.02.012
|
[30] |
Xue H, Sun J W. Study on micro region of crack tip of welded joints under different matches of yield stress [J]. Hot Work. Technol., 2016, 45(21): 239
|
[30] |
薛 河, 孙剑伟. 不同屈服强度匹配下焊接接头裂纹尖端微观区域的研究 [J]. 热加工工艺, 2016, 45(21): 239
|
[31] |
Rakin M, Medjo B, Gubeljak N, et al. Micromechanical assessment of mismatch effects on fracture of high-strength low alloyed steel welded joints [J]. Eng. Fract. Mech., 2013, 109: 221
doi: 10.1016/j.engfracmech.2013.06.010
|
[32] |
Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
doi: 10.1016/j.engfracmech.2013.11.018
|
[33] |
Yang J, Wang L. Effect range of the material constraint-I. Center crack [J]. Materials (Basel), 2019, 12(1): E67
|
[34] |
Dai Y, Yang J, Wang L. Effect range of the material constraint-II. Interface crack [J]. Metals (Basel), 2019, 9: 696
doi: 10.3390/met9060696
|
[35] |
Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties and Microstructures of Alloy52M dissimilar metal welded joint between A508 ferritic steel and 316L stainless steel [J]. Adv. Mater. Res., 2012, 509: 103
|
[36] |
Yang J. Micromechanical analysis of in-plane constraint effect on local fracture behavior of cracks in the weakest locations of dissimilar metal welded joint [J]. Acta Metall. Sin. (Engl. Lett., 2017, 30: 840
|
[37] |
Linder C, Armero F. Finite elements with embedded branching [J]. Finite Elem. Anal. Des., 2009, 45: 280
doi: 10.1016/j.finel.2008.10.012
|
[38] |
Lloberas-Valls O, Huespe A E, Oliver J, et al. Strain injection techniques in dynamic fracture modeling [J]. Comput. Meth. Appl. Mech. Eng., 2016, 308: 499
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|