Please wait a minute...
金属学报  2019, Vol. 55 Issue (12): 1495-1502    DOI: 10.11900/0412.1961.2019.00220
  研究论文 本期目录 | 过刊浏览 |
TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性
陈雷1,2,郝硕2,邹宗园2,韩舒婷2,张荣强2,郭宝峰2()
1. 燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
2. 燕山大学机械工程学院 秦皇岛 066004
Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation
CHEN Lei1,2,HAO Shuo2,ZOU Zongyuan2,HAN Shuting2,ZHANG Rongqiang2,GUO Baofeng2()
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
引用本文:

陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. Acta Metall Sin, 2019, 55(12): 1495-1502.

全文: PDF(8552 KB)   HTML
摘要: 

通过系列循环加载实验,研究了TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性,同时结合TEM分析,讨论了微观机理。结果表明,Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢在单调加载条件下力学性能优异,表现出TRIP型双相不锈钢典型的“三阶段”硬化特征;Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢的循环硬化/软化特性对应变幅和循环周次敏感。在小应变幅下,Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢先初始循环硬化(循环周次N<5 cyc),随后大幅循环软化后逐渐稳定。而在大应变幅下,Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢变形初期(N<5 cyc)迅速循环硬化后,持续循环软化,未达循环稳定而直至疲劳失效。循环变形过程中铁素体相中形成的位错墙是Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢整体循环软化的主要原因;而较大应变幅下奥氏体会发生循环诱导ε马氏体相变,抑制软化,从而使得Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢循环软化率随(塑性)应变幅的增大表现出先快速增大,后缓慢增大,最后降低的趋势。相比于单调加载状态,Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢随应变幅的增加表现出“硬化→软化→再硬化”规律。另一方面,Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢循环应力幅与塑性应变幅间(lgσa-lgεa)表现出三阶段的线性关系,对应的循环硬化指数(n')分别为:0.16 (阶段Ⅰ)、0.09 (阶段Ⅱ)和0.17 (阶段Ⅲ);各阶段n'的变化分别与两相间协调变形(Ⅰ→Ⅱ)及循环诱导ε马氏体相变(Ⅱ→Ⅲ)有关。

关键词 Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢TRIP效应循环变形迟滞回线循环硬化/软化循环诱导马氏体    
Abstract

Duplex stainless steel (DSS) is a type of steel with ferritic-austenitic duplex structure. It has been widely used in the engineering field such as petrochemicals and oceans. Recently, a series of economical DSSs with TRIP effect have been developed by replacing Ni-Mo with Mn-N. Generally, most structural components are subjected to periodic alternating loads during service, and then cyclic deformation which causes different mechanical responses with monotonous loading condition occurs. In this work, the mechanical properties of a Mn-N bearing DSS Fe-19.6Cr-2Ni-2.9Mn-1.6Si during cyclic deformation condition were studied and the microstructural mechanism was characterized by TEM. The results show that the Fe-19.6Cr-2Ni-2.9Mn-1.6Si steel exhibits enhanced mechanical properties and a typical "three-stage" hardening characteristic due to TRIP effect under monotonic loading condition. Cyclic hardening/softening characteristics of the Fe-19.6Cr-2Ni-2.9Mn-1.6Si steel are sensitive to strain amplitude and the number of cycle (N). At a small strain amplitude, cyclic hardening occurs firstly when N<5 cyc, then cyclic softening starts and cyclic deformation gradually trends to a stabilization. At a large strain amplitude, after a rapidly cyclic hardening (N<5 cyc), the Fe-19.6Cr-2Ni-2.9Mn-1.6Si steel is continuously softened until failure and no stabilization occurs. The dislocation walls form in ferrite during cyclic deformation which responsible for the overall cyclic softening of the Fe-19.6Cr-2Ni-2.9Mn-1.6Si steel; While austenite undergoes cyclic induced ε martensite transformation at large strain amplitude whereby the softening is suppressed, so that the cyclic softening rate of the Fe-19.6Cr-2Ni-2.9Mn-1.6Si steel increases rapidly with the increase of the (plastic) strain amplitude, followed by a slow increase and a final decrease. Compared with the monotonous loading condition, the Fe-19.6Cr-2Ni-2.9Mn-1.6Si steel shows a law of "hardening→softening→ re-hardening" with the increase of strain amplitude. In particular, there is a three-stage linear relationship between logarithmic cyclic stress amplitude and logarithmic plastic strain amplitude (lgσa-lgεa), and the corresponding cyclic hardening index (n') are: 0.16 (stage I), 0.09 (stage II) and 0.17 (stage III), respectively. The change of n' in each stage is related to the coordinated deformation between two phases (I→II) and the cyclic induced ε martensitic transformation (II→III).

Key wordsFe-19.6Cr-2Ni-2.9Mn-1.6Si steel    TRIP effect    cyclic deformation    hysteresis loop    cyclic hardening/softening    cyclic induced martensite
收稿日期: 2019-07-04     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目(Nos.51675467);国家自然科学基金项目(51675465);国家自然科学基金项目(51905467);河北省自然科学基金项目(No.E2019203560);中国博士后科学基金项目(Nos.2016M600194);中国博士后科学基金项目(2017T100712)
作者简介: 陈 雷,男,1982年生,教授,博士
图1  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢的初始组织及疲劳试样示意图
图2  单调加载时Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢的工程应力-工程应变曲线和真应力-真应变及加工硬化率曲线
图3  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢在单级循环加载实验下迟滞回线随循环周次的变化
图4  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢在增级循环加载实验中各应变幅循环稳定的迟滞回线
图5  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢在各循环加载条件下相同应变幅循环稳定迟滞回线的对比
图6  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢的循环应力响应曲线
图7  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢循环软化率(δ-)随塑性应变幅的变化
图8  Fe-19.6Cr-2Ni-2.9Mn-1.6Si钢在应变幅εa=0.7%条件下循环786 cyc后的典型TEM像
图9  Fe-19.6Cr-2Ni-2.9Mn-1.6Si的循环应力-应变曲线

Steel

wN

%

Vγ

εap1

%

εap2

%

Magnin's[3]0.070.50-0.09
S32750[21]0.260.50-0.07
329[4]0.0720.380.0070.05
2205[19]0.130.450.010.06
2507[19]0.240.560.010.06
Fe-19.6Cr-2Ni-2.9Mn-1.6Si0.210.47-0.02
表1  几种典型双相不锈钢循环变形阶段性特征数据[3,4,19,21]
[1] Zhao Y, Zhang W N, Liu X, et al. Development of TRIP-aided lean duplex stainless steel by twin-roll strip casting and its deformation mechanism [J]. Metall. Mater. Trans., 2016, 47A: 6292
[2] Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
[3] Magnin T, Lardon J M, Coudreuse L. Low Cycle Fatigue [M]. West Conshohocken, PA: ASTM International, 1988: 812
[4] Mateo A, Llanes L, Iturgoyen L, et al. Cyclic stress-strain response and dislocation substructure evolution of a ferrite-austenite stainless steel [J]. Acta Mater., 1996, 44: 1143
[5] Polák J, Petrenec M, Kruml T. Cyclic plastic response and fatigue life in superduplex 2507 stainless steel [J]. Int. J. Fatigue, 2010, 32: 279
[6] Guo B F, Zhang Q F, Chen L, et al. Influence of annealing temperature on the strain-hardening behavior of a lean duplex stainless steel [J]. Mater. Sci. Eng., 2018, A722: 216
[7] Kang J Y, Kim H, Kim K I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114
[8] Choi J Y, Ji J H, Hwang S W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater. Sci. Eng., 2012, A535: 32
[9] Chen L, Li F, Zhang Y J, et al. Calculation for the phase diagram and stability of metastable austenite in a TRIP/TWIP duplex stainless steel [J]. J. Yanshan Univ., 2016, 40: 35
[9] (陈 雷, 李 飞, 张英杰等. 一种TRIP/TWIP型双相不锈钢的相图及其亚稳奥氏体组织稳定性计算 [J]. 燕山大学学报, 2016, 40: 35)
[10] Choi J Y, Ji J H, Hwang S W, et al. Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel [J]. Mater. Sci. Eng., 2012, A534: 673
[11] Choi J Y, Ji J H, Hwang S W, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng., 2011, A528: 6012
[12] Baudry G, Pineau A. Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel [J]. Mater. Sci. Eng., 1977, 28: 229
[13] Glage A, Weidner A, Biermann H. Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIP-steels [J]. Procedia Eng., 2010, 2: 2085
[14] Droste M, Ullrich C, Motylenko M, et al. Fatigue behavior of an ultrafine-grained metastable CrMnNi steel tested under total strain control [J]. Int. J. Fatigue, 2018, 106: 143
[15] Glage A, Weidner A, Biermann H. Cyclic deformation behaviour of three austenitic cast CrMnNi TRIP/TWIP steels with various Ni content [J]. Steel Res. Int., 2011, 82: 1040
[16] Pessoa D F, Kirchhoff G, Zimmermann M. Influence of loading frequency and role of surface micro-defects on fatigue behavior of metastable austenitic stainless steel AISI 304 [J]. Int. J. Fatigue, 2017, 103: 48
[17] Ackermann S, Kulawinski D, Henkel S, et al. Biaxial in-phase and out-of-phase cyclic deformation and fatigue behavior of an austenitic TRIP steel [J]. Int. J. Fatigue, 2014, 67: 123
[18] Alvarez-Armas I, Marinelli M C, Here?ú S, et al. On the cyclic softening behavior of SAF 2507 duplex stainless steel [J]. Acta Mater., 2006, 54: 5041
[19] Mateo A, Gironès A, Keichel J, et al. Cyclic deformation behaviour of superduplex stainless steels [J]. Mater. Sci. Eng., 2001, A314: 176
[20] Lillbacka R, Chai G, Ekh M, et al. Cyclic stress-strain behavior and load sharing in duplex stainless steels: Aspects of modeling and experiments [J]. Acta Mater., 2007, 55: 5359
[21] Alvarez-Armas I. Low cycle fatigue behavior on duplex stainless steels [J]. Trans. Indian Inst. Met, 2010, 63: 159
[22] Akdut N. Phase morphology and fatigue lives of nitrogen alloyed duplex stainless steels [J]. Int. J. Fatigue, 1999, 21: S97
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[3] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[4] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[5] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[6] 朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
[7] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[8] 张思倩, 吴伟, 陈丽丽, 车欣, 陈立佳. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*[J]. 金属学报, 2014, 50(6): 700-706.
[9] 任勇强 谢振家 尚成嘉. 低碳钢中残余奥氏体的调控及对力学性能的影响[J]. 金属学报, 2012, 48(9): 1074-1080.
[10] 鲁法云 杨平 孟利 毛卫民. 18Mn TRIP钢温变形过程中马氏体逆相变行为[J]. 金属学报, 2010, 46(10): 1153-1160.
[11] 张维娜 刘振宇 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.
[12] 姜庆伟 刘印 王尧 晁月盛 李小武. 超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J]. 金属学报, 2009, 45(7): 873-879.
[13] 阚前华; 康国政; 钱林茂; 刘宇杰; 王海林 . 超弹性NiTi合金相变棘轮行为的实验研究[J]. 金属学报, 2008, 44(8): 949-955 .
[14] 熊缨 . 疲劳裂纹扩展两参量驱动力的一个新模型[J]. 金属学报, 2008, 44(11): 1348-1353 .
[15] 郭素娟; 康国政 . SiCp/6061Al合金复合材料循环变形行为的有限元模拟[J]. 金属学报, 2006, 42(10): 1051-1055 .