Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 958-966    DOI: 10.11900/0412.1961.2018.00519
  本期目录 | 过刊浏览 |
2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究
蔡超1(),李煬1,李劲风2,张昭3,张鉴清3
1. 宁夏大学化学化工学院煤炭高效利用与绿色化工国家重点实验室 银川 750021
2. 中南大学材料科学与工程学院 长沙 410083
3. 浙江大学化学系 杭州 310058
Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet
Chao CAI1(),Yang LI1,Jinfeng LI2,Zhao ZHANG3,Jianqing ZHANG3
1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
3. Department of Chemistry, Zhejiang University, Hangzhou 310058, China
引用本文:

蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
Chao CAI, Yang LI, Jinfeng LI, Zhao ZHANG, Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. Acta Metall Sin, 2019, 55(8): 958-966.

全文: PDF(21625 KB)   HTML
摘要: 

研究了2A97 Al-Li合金薄板不同时效后微观组织、电位及在晶间腐蚀(IGC)介质中的腐蚀特征。结果表明,随着时效时间延长,2A97 Al-Li合金中时效析出T1相等,导致合金电位下降,与之对应的合金腐蚀类型呈如下规律变化:孔蚀、晶间腐蚀(包括局部和全面晶间腐蚀)程度随时效时间延长呈先增加后降低的趋势。同时,相较T6态时效,T8态时效更加促进T1相的生成,而合金电位下降速度也更快。电位越低,晶间腐蚀程度越小,代之以大面积孔蚀程度越高。以上述研究为基础,建立了合金腐蚀类型与电位之间的相关性,对于不同时效处理时快速评价Al-Li合金的晶间腐蚀敏感性具有可行性。

关键词 Al-Li合金时效析出晶间腐蚀电位    
Abstract

The microstructures and open circuit potential (OCP) of 2A97 Al-Li alloy sheets with different ageing and their corrosion features in intergranular corrosion (IGC) medium were investigated. As the extension of ageing time, T1 (Al2CuLi) phases are precipitated, the alloy potential is decreased, which is accompanied with the following corrosion mode evolution: pitting, IGC (including local IGC and general IGC) and pitting again. Meanwhile, with ageing progress, the IGC depth is increased firstly and then decreased. Compared to T6 ageing, T8 ageing accelerates the precipitation of T1 phases, the potential therefore decreases more quickly. After a certain ageing, the lower the potential, the smaller the IGC degree, and the greater the pitting degree. A correlation between OCP and corrosion mode was proposed, which may be used to compare the IGC sensitivity of Al-Li alloy with different tempers.

Key wordsAl-Li alloy    ageing precipitation    intergranular corrosion    potential
收稿日期: 2018-11-16     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(No.51741107);西部地区建设一流大学重大创新项目(No.ZKZD17003);宁夏回族自治区“化学工程与技术”国内一流学科建设项目(No.NXYLXK2017A04)
作者简介: 蔡 超,男,1978年生,教授,博士
图1  2A97 Al-Li合金T6时效不同时间并腐蚀后典型的纵截面腐蚀形貌
Time / hDominating corrosion modeMax. IGC depth / μmMax. pitting depth / μm
0Pitting-120
2Local IGC140-
4General IGC238-
6General IGC221-
11.5Local IGC with pitting179101
22Local IGC with pitting134135
36Pitting with local IGC101192
45Pitting with local IGC72163
58Pitting with local IGC82151
68Pitting with slight IGC-199
72Pitting with slight IGC-227
98Pitting with slight IGC-167
120Pitting with slight IGC-181
表1  2A97 Al-Li合金T6态时效不同时间并腐蚀后腐蚀类型和最大腐蚀深度
图2  2A97 Al-Li合金薄板T8时效不同时间并腐蚀后典型的纵截面腐蚀形貌
Time / hDominating corrosion modeMax. IGC depth / μmMax. pitting depth / μm
0Pitting-125
1Pitting and local IGC60122
2Pitting and local IGC90120
4Pitting with local IGC115125
10Pitting-98
22Pitting-107
28Pitting-100
36Pitting-107
48Pitting-127
60Pitting-110
72Pitting-140
120Pitting-100
表2  A97Al-Li合金T8时效不同时间并腐蚀后腐蚀类型和最大腐蚀深度
图3  T6时效不同时间2A97 Al-Li合金薄板在3.5%NaCl溶液中的极化曲线
图4  T6和T8时效不同时间2A97 Al-Li合金薄板在3.5%NaCl溶液中的开路电位变化
图5  T6态时效不同时间后2A97 Al-Li合金显微组织的TEM像
图6  T8态时效不同时间后2A97 Al-Li合金显微组织的TEM像
图7  腐蚀类型与电位的相关性示意图
[1] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
[2] Zhang X F, Li G A, Lu Z, et al. Effect of preaged stretch after quenched on the properties and microstructure of a naturally aged Al-Li alloy [J]. Acta Metall. Sin., 2016, 52: 1497
[2] (张显峰, 李国爱, 陆 政等. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响 [J]. 金属学报, 2016, 52: 1497)
[3] Zhang X L, Zhang L, Wu G H, et al. Influences of Mg content on the microstructures and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy [J]. J. Mater. Sci., 2019, 54: 791
[4] Yang Y, Zhou K, Li G J. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening [J]. Opt. Laser. Technol., 2019, 109: 1
[5] Wei X Y, Zheng Z Q, She L J, et al. Microalloying roles of Mg and Zn additions in 2099 Al-Li alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1583
[5] (魏修宇, 郑子樵, 佘玲娟等. Mg、Zn在2099铝锂合金中的微合金化作用 [J]. 稀有金属材料与工程, 2010, 39: 1583)
[6] Luo X F, Zheng Z Q, Zhong J F, et al. Effects of Mg, Ag and Zn multi-alloying on aging behavior of new Al-Cu-lialloy [J]. Chin. J. Nonferrous Met., 2013, 23: 1833
[6] (罗先甫, 郑子樵, 钟继发等. Mg、Ag、Zn多元微合金化对新型Al-Cu-Li合金时效行为的影响 [J]. 中国有色金属学报, 2013, 23: 1833)
[7] Li J F, Birbilis N, Liu D Y, et al. Intergranular corrosion of Zn-free and Zn-microalloyed Al-xCu-y Lialloys [J]. Corros. Sci., 2016, 105: 44
[8] Liu D Y, Li J F, Ma Y L, et al. A closer look at the role of Zn in the microstructure and corrosion of an Al-Cu-Li alloy [J]. Corros. Sci., 145: 220
[9] Liu F J, Fu L, Zhang W Y. Interface structure and mechanical pro-perties of friction stir welding joint of 2099-T83/2060-T8 dissimilar Al-Li alloys [J]. Acta Metall. Sin., 2015, 51: 281
[9] (刘奋军, 傅 莉, 张纹源等. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能 [J]. 金属学报, 2015, 51: 281)
[10] Liu W C, Feng S, Li Z Q, et al. Effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy [J]. J. Mater. Sci. Technol., 2018, 34: 2256
[11] Zhou X, Liu Q, Liu R R, et al. Characterization of microstructure and mechanical properties of Mg-8Li-3Al-1Y alloy subjected to different rolling processes [J]. Met. Mater. Int., 2018, 24: 1359
[12] Donatus U, Berbel L O, Costa I. Qualitative use of potentiodynamic polarization and anodic hydrogen evolution in the assessment of corrosion susceptibility in AA2198-T851 Al-Cu-Li alloy [J]. Mater. Corros., 2018, 69: 1375
[13] Liu Q, Zhu R H, Liu D Y, et al. Correlation between artificial aging and intergranular corrosion sensitivity of a new Al-Cu-Li alloy sheet [J]. Mater. Corros., 2017, 68: 65
[14] Huang J L, Li J F, Liu D Y, et al. Correlation of intergranular corrosion behaviour with microstructure in Al-Cu-Li alloy [J]. Corros. Sci., 2018, 139: 215
[15] Proton V, Alexis J, Andrieu E, et al. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium-copper-lithium alloy [J]. Corros. Sci., 2014, 80: 494
[16] Cai C, Li J F, Wang H, et al. Dependence of intergranular corrosion sensitivity of Al-Li alloys on aging stage [J]. Rare Met. Mater. Eng., 2015, 44: 2523
[16] (蔡 超, 李劲风, 王 恒等. 铝锂合金晶间腐蚀敏感性与时效阶段的相关性 [J]. 稀有金属材料与工程, 2015, 44: 2523)
[17] Ning A L, Liu Z Y, Feng C, et al. Study of microstructure, electrical conductivity and stress corrosion resistance of Al-Zn-Mg-Cu alloys [J]. Trans. Mater. Heat Treat., 2008, 29(2): 108
[17] (宁爱林, 刘志义, 冯 春等. Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究 [J]. 材料热处理学报, 2008, 29(2): 108)
[18] Guyot P, Cottignies L. Precipitation kinetics, mechanical strength and electrical conductivity of Al-Zn-Mg-Cu alloys [J]. Acta Mater., 1996, 44: 4161
[19] Zhang F, Shen J, Yan X D, et al. Dynamic softening mechanism of 2099 alloy during hot deformation process [J]. Acta Metall. Sin., 2014, 50: 691
[19] (张飞, 沈健, 闫晓东等. 2099合金热变形过程中的动态软化机制 [J]. 金属学报, 2014, 50: 691)
[20] Xia L, Zhan X H, Yu H S. Morphology and formation mechanism of equiaxed grains along the fusion boundary in Al-Li alloy weld seam [J]. Mater. Res. Exp., 2018, 5: 116523
[21] Li J F, Ye Z H, Liu D Y, et al. Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 133
[22] Gable B M, Zhu A W, Csontos A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. J. Light Met., 2001, 1: 1
[23] Sun J, Wang C, Song J L, et al. Multi-functional application of oil-infused slippery Al surface: From anti-icing to corrosion resistance [J]. J. Mater. Sci., 2018, 53: 16099
[24] Li J F, Zheng Z Q, Li S C, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloy [J]. Corros. Sci., 2007, 49: 2436
[25] Li J F, Li C X, Peng Z W, et al. Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution [J]. J. Alloys Compd., 2008, 460: 688
[1] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[4] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[5] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[6] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[7] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[8] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[9] 李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
[10] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[11] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[12] 陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
[13] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[14] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[15] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出过程的小角度X射线散射定量表征[J]. 金属学报, 2017, 53(8): 897-906.