|
|
电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能 |
李师居1,2, 李洋1,2, 陈建强1, 李中豪1, 许光明1,2( ), 李勇1, 王昭东1, 王国栋1 |
1.东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819 2.东北大学材料电磁过程研究教育部重点实验室 沈阳 110819 |
|
Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field |
LI Shiju1,2, LI Yang1,2, CHEN Jianqiang1, LI Zhonghao1, XU Guangming1,2( ), LI Yong1, WANG Zhaodong1, WANG Guodong1 |
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2.Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China |
引用本文:
李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
Shiju LI,
Yang LI,
Jianqiang CHEN,
Zhonghao LI,
Guangming XU,
Yong LI,
Zhaodong WANG,
Guodong WANG.
Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. Acta Metall Sin, 2020, 56(6): 831-839.
[1] |
El-Aty A A, Xu Y, Zhang S H, et al. Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 Al-Li alloys sheet undergoing different strain rates and fibre orientation: A comparative study [J]. Procedia Eng., 2017, 207: 13
doi: 10.1016/j.proeng.2017.10.730
|
[2] |
Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys [J]. Chin. J. Nonferrous Met., 2011, 21: 2337
|
[2] |
郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21: 2337
|
[3] |
Wei X Y, Zheng Z Q, Li S C, et al. Heat resistant properties of 2197 Al-Li alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1417
doi: 10.1016/S1003-6326(07)60287-8
|
[3] |
魏修宇, 郑子樵, 李世晨等. 2197铝锂合金的耐热性能 [J]. 中国有色金属学报, 2007, 17: 1417
|
[4] |
Jiang N, Gao X, Zheng Z Q. Microstructure evolution of aluminum-lithium alloy 2195 undergoing commercial production [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 740
doi: 10.1016/S1003-6326(09)60207-7
|
[5] |
El-Aty A A, Xu Y, Guo X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J]. J. Adv. Res., 2018, 10: 49
doi: 10.1016/j.jare.2017.12.004
|
[6] |
Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
|
[7] |
Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
|
[8] |
Ma Y, Zhou X, Thompson G E, et al. Distribution of intermetallics in an AA 2099-T8 aluminium alloy extrusion [J]. Mater. Chem. Phys., 2011, 126: 46
doi: 10.1016/j.matchemphys.2010.12.014
|
[9] |
De P S, Mishra R S, Baumann J A. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy [J]. Acta Mater., 2011, 59: 5946
doi: 10.1016/j.actamat.2011.06.003
|
[10] |
Kim M S, Kim S H, Kim H W. Deformation-induced center segregation in twin-roll cast high-Mg Al-Mg strips [J]. Scr. Mater., 2018, 152: 69
doi: 10.1016/j.scriptamat.2018.04.017
|
[11] |
Sun B Y. Theory and Technology of Strip Casting and Rolling [M]. Beijing: Metallurgical Industry Press, 2002: 25
|
[11] |
孙斌煜. 板带铸轧理论与技术 [M]. 北京: 冶金工业出版社, 2002: 25
|
[12] |
Stiller K, Warren P J, Hansen V, et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 ℃ and 150 ℃ [J]. Mater. Sci. Eng., 1999, A270: 55
|
[13] |
Altenpohl D, Beck P. Aluminium und Aluminiumlegierungen [M]. Berlin: Springer Verlag, 1965: 45
|
[14] |
Li Y J, Arnberg L. Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization [J]. Mater. Sci. Eng., 2003, A347: 130
|
[15] |
Li Y J, Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization [J]. Acta Mater., 2003, 51: 3415
doi: 10.1016/S1359-6454(03)00160-5
|
[16] |
Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: Mechanical Industry Press, 2000: 76
|
[16] |
胡汉起. 金属凝固原理 [M]. 第2版. 北京: 机械工业出版社, 2000: 76
|
[17] |
Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification [J]. Mater. Sci. Eng., 1997, A226-228: 763
|
[18] |
Wang D, Zhou C, Xu G J, et al. Heat transfer behavior of top side-pouring twin-roll casting [J]. J. Mater. Process. Technol., 2014, 214: 1275
doi: 10.1016/j.jmatprotec.2014.01.009
|
[19] |
Wang X D, Wang Z F, Liu Y, et al. A particle swarm approach for optimization of secondary cooling process in slab continuous casting [J]. Int. J. Heat Mass Transfer, 2016, 93: 250
|
[20] |
Sun K M, Li L, Chen S D, et al. A new approach to control centerline macrosegregation in Al-Mg-Si alloys during twin roll continuous casting [J]. Mater. Lett., 2017, 190: 205
doi: 10.1016/j.matlet.2016.12.109
|
[21] |
Su X, Xu G M, Jiang D H. Abatement of segregation with the electro and static magnetic field during twin-roll casting of 7075 alloy sheet [J]. Mater. Sci. Eng., 2014, A599: 279
|
[22] |
Zhang Q, Cui J Z, Lu G M, et al. Microstructure and solute distribution of 7075 alloy produced by semi-continuous casting under electromagnetic vibration [J]. Chin. J. Nonferrous Met., 2003, 13: 1184
|
[22] |
张 勤, 崔建忠, 路贵民等. 电磁振荡法半连铸7075合金的微观组织及溶质元素分布 [J]. 中国有色金属学报, 2003, 13: 1184
|
[23] |
Su X, Wang S J, Ouyang X, et al. Physical and mechanical properties of 7075 sheets produced by EP electro- and electromagnetic cast rolling [J]. Mater. Sci. Eng., 2014, A607: 10
|
[24] |
Chen G, Li J T, Yin Z K, et al. Improvement of microstructure and properties in twin-roll casting 7075 sheet by lower casting speed and compound field [J]. Mater. Char., 2017, 127: 325
doi: 10.1016/j.matchar.2017.03.024
|
[25] |
Zhou Y H. Solidification Technology [M]. Beijing: Machinery Industry Press, 1988: 54
|
[25] |
周尧和. 凝固技术 [M]. 北京: 机械出版社, 1998: 54
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|