Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 831-839    DOI: 10.11900/0412.1961.2019.00447
  本期目录 | 过刊浏览 |
电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能
李师居1,2, 李洋1,2, 陈建强1, 李中豪1, 许光明1,2(), 李勇1, 王昭东1, 王国栋1
1.东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
2.东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field
LI Shiju1,2, LI Yang1,2, CHEN Jianqiang1, LI Zhonghao1, XU Guangming1,2(), LI Yong1, WANG Zhaodong1, WANG Guodong1
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
全文: PDF(2573 KB)   HTML
摘要: 

采用OM、SEM、EMPA、DSC、电导率和常温拉伸性能测试等手段,分别对传统双辊铸轧及电磁双辊铸轧2种工艺条件下制备的2099Al-Li合金的微观组织及性能进行了深入研究,分析了双辊铸轧过程中的偏析产生机理及电磁振荡场的作用机制。结果表明:双辊铸轧工艺将连续铸造和轧制变形结合为一道工序,解决了传统铸造方法制备Al-Li合金因Li元素的加入而导致的严重缩孔等问题,但在铸轧板材中心存在宽度接近1 mm的宏观偏析带。在铸轧过程中施加电磁振荡场后,偏析带基本消除;二次枝晶臂间距缩减至6.90 μm;Cu、Zn、Mg元素的偏析度分别降低至2.45、0.93、1.05;合金中的非平衡共晶相含量显著降低。相较于双辊铸轧工艺,电磁双辊铸轧制备的2099Al-Li合金板材的抗拉强度、屈服强度、延伸率分别提升了34 MPa、18 MPa、2.8%,合金的力学性能得到大幅改善。

关键词 2099Al-Li合金双辊铸轧电磁振荡场偏析性能    
Abstract

Al-Li alloy has been widely applied in the fields of aircraft, aerospace and military applications due to its superior comprehensive properties. Al-Li alloy prepared by traditional casting process will have shrinkage porosities and gas holes defects due to the gas absorption of lithium element. Twin-roll casting (TRC) process combines continuous casting and rolling deformation into one process. The melt subjected to a certain rolling force during cooling and solidifying, compensates for the solidification shrinkage of liquid metal in the roll-casting region, hence solving the problems of porosity and other defects in Al-Li alloy. However, due to the wide solidification range of 2099Al-Li alloy, the central macro-segregation inevitably occurs in the sheets produced by TRC, which seriously deteriorates the mechanical properties of the sheets. How to eliminate segregation in aluminum alloys strips by adjusting the rolling parameters has been studied for decades. But the effect was not obvious and new approaches are required to solve this challenge. Introducing electromagnetic oscillation field in TRC process may be an effective way to solve the central segregation in TRC sheets. In this work, the OM, SEM, EMPA, DSC, conductivity and tensile test are employed to study the microstructure and properties of 2099Al-Li alloy prepared by TRC and electromagnetic TRC, respectively. The Lorentz force generated in the roll-casting region by applying electromagnetic oscillation field during TRC, which can break the dendrite and refine the solidification structure of the alloy. The central segregation band of the TRC sheet basically eliminated, and the segregation degree of Cu, Zn and Mg elements reduced to 2.45, 0.93 and 1.05. The macro-segregation and micro-segregation of sheets were effectively reduced. At the same time, the electromagnetic oscillation field can enhance the mixing ability of solute atoms, reduce the content of non-equilibrium eutectic phase and improve the supersaturated solid solubility of matrix. Compared with TRC sheet, the tensile strength, yield strength and elongation of 2099Al-Li alloy sheet prepared by ETRC increased by 34 MPa, 18 MPa and 2.8% respectively, hence the mechanical properties of the alloy sheet were greatly improved. This research work provides a new idea for the efficient preparation of Al-Li alloy with energy-saving, high-efficiency and green environmental protection.

Key words2099Al-Li alloy    twin-roll casting    electromagnetic oscillation field    segregation    property
收稿日期: 2019-12-14     
ZTFLH:  146.2  
基金资助:国家自然科学基金项目(51790485)
通讯作者: 许光明     E-mail: xu-gm@epm.neu.edu.cn
Corresponding author: XU Guangming     E-mail: xu-gm@epm.neu.edu.cn
作者简介: 李师居,男,1993年生,博士生

引用本文:

李师居, 李洋, 陈建强, 李中豪, 许光明, 李勇, 王昭东, 王国栋. 电磁振荡场作用下双辊铸轧制备2099Al-Li合金的偏析行为及组织性能[J]. 金属学报, 2020, 56(6): 831-839.
Shiju LI, Yang LI, Jianqiang CHEN, Zhonghao LI, Guangming XU, Yong LI, Zhaodong WANG, Guodong WANG. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field. Acta Metall Sin, 2020, 56(6): 831-839.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00447      或      https://www.ams.org.cn/CN/Y2020/V56/I6/831

图1  电磁双辊铸轧工艺示意图和电磁双辊铸轧工艺实物图
图2  不同工艺条件下制备的2099Al-Li合金的微观组织
图3  不同工艺条件下制备的2099Al-Li合金二次枝晶臂间距统计结果
图4  不同工艺条件下制备的2099Al-Li合金的微观组织及线扫描元素分布图
ProcessElementCmax / %Cmin / %C0 / %Se
TRCCu23.250.221.6314.13
Zn1.140.290.691.23
Mg0.430.150.211.33
Electromagnetic TRCCu1.590.220.562.45
Zn0.860.340.560.93
Mg0.340.120.211.05
表1  不同工艺条件制备的2099Al-Li合金EPMA特征位置上的元素含量
图5  不同工艺条件下2099Al-Li合金各元素偏析度
图6  不同工艺条件下制备的2099Al-Li合金的DSC曲线
图7  不同工艺条件下制备的2099Al-Li合金拉伸断口形貌
图8  带电粒子在电磁振荡场作用下的受力分析和枝晶碎断模型
[1] El-Aty A A, Xu Y, Zhang S H, et al. Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 Al-Li alloys sheet undergoing different strain rates and fibre orientation: A comparative study [J]. Procedia Eng., 2017, 207: 13
doi: 10.1016/j.proeng.2017.10.730
[2] Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys [J]. Chin. J. Nonferrous Met., 2011, 21: 2337
[2] 郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21: 2337
[3] Wei X Y, Zheng Z Q, Li S C, et al. Heat resistant properties of 2197 Al-Li alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1417
doi: 10.1016/S1003-6326(07)60287-8
[3] 魏修宇, 郑子樵, 李世晨等. 2197铝锂合金的耐热性能 [J]. 中国有色金属学报, 2007, 17: 1417
[4] Jiang N, Gao X, Zheng Z Q. Microstructure evolution of aluminum-lithium alloy 2195 undergoing commercial production [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 740
doi: 10.1016/S1003-6326(09)60207-7
[5] El-Aty A A, Xu Y, Guo X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J]. J. Adv. Res., 2018, 10: 49
doi: 10.1016/j.jare.2017.12.004
[6] Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
doi: 10.1016/j.actamat.2017.03.018
[7] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
[8] Ma Y, Zhou X, Thompson G E, et al. Distribution of intermetallics in an AA 2099-T8 aluminium alloy extrusion [J]. Mater. Chem. Phys., 2011, 126: 46
doi: 10.1016/j.matchemphys.2010.12.014
[9] De P S, Mishra R S, Baumann J A. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy [J]. Acta Mater., 2011, 59: 5946
doi: 10.1016/j.actamat.2011.06.003
[10] Kim M S, Kim S H, Kim H W. Deformation-induced center segregation in twin-roll cast high-Mg Al-Mg strips [J]. Scr. Mater., 2018, 152: 69
doi: 10.1016/j.scriptamat.2018.04.017
[11] Sun B Y. Theory and Technology of Strip Casting and Rolling [M]. Beijing: Metallurgical Industry Press, 2002: 25
[11] 孙斌煜. 板带铸轧理论与技术 [M]. 北京: 冶金工业出版社, 2002: 25
[12] Stiller K, Warren P J, Hansen V, et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 ℃ and 150 ℃ [J]. Mater. Sci. Eng., 1999, A270: 55
[13] Altenpohl D, Beck P. Aluminium und Aluminiumlegierungen [M]. Berlin: Springer Verlag, 1965: 45
[14] Li Y J, Arnberg L. Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization [J]. Mater. Sci. Eng., 2003, A347: 130
[15] Li Y J, Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization [J]. Acta Mater., 2003, 51: 3415
doi: 10.1016/S1359-6454(03)00160-5
[16] Hu H Q. Metal Solidification Principle [M]. 2nd Ed., Beijing: Mechanical Industry Press, 2000: 76
[16] 胡汉起. 金属凝固原理 [M]. 第2版. 北京: 机械工业出版社, 2000: 76
[17] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification [J]. Mater. Sci. Eng., 1997, A226-228: 763
[18] Wang D, Zhou C, Xu G J, et al. Heat transfer behavior of top side-pouring twin-roll casting [J]. J. Mater. Process. Technol., 2014, 214: 1275
doi: 10.1016/j.jmatprotec.2014.01.009
[19] Wang X D, Wang Z F, Liu Y, et al. A particle swarm approach for optimization of secondary cooling process in slab continuous casting [J]. Int. J. Heat Mass Transfer, 2016, 93: 250
[20] Sun K M, Li L, Chen S D, et al. A new approach to control centerline macrosegregation in Al-Mg-Si alloys during twin roll continuous casting [J]. Mater. Lett., 2017, 190: 205
doi: 10.1016/j.matlet.2016.12.109
[21] Su X, Xu G M, Jiang D H. Abatement of segregation with the electro and static magnetic field during twin-roll casting of 7075 alloy sheet [J]. Mater. Sci. Eng., 2014, A599: 279
[22] Zhang Q, Cui J Z, Lu G M, et al. Microstructure and solute distribution of 7075 alloy produced by semi-continuous casting under electromagnetic vibration [J]. Chin. J. Nonferrous Met., 2003, 13: 1184
[22] 张 勤, 崔建忠, 路贵民等. 电磁振荡法半连铸7075合金的微观组织及溶质元素分布 [J]. 中国有色金属学报, 2003, 13: 1184
[23] Su X, Wang S J, Ouyang X, et al. Physical and mechanical properties of 7075 sheets produced by EP electro- and electromagnetic cast rolling [J]. Mater. Sci. Eng., 2014, A607: 10
[24] Chen G, Li J T, Yin Z K, et al. Improvement of microstructure and properties in twin-roll casting 7075 sheet by lower casting speed and compound field [J]. Mater. Char., 2017, 127: 325
doi: 10.1016/j.matchar.2017.03.024
[25] Zhou Y H. Solidification Technology [M]. Beijing: Machinery Industry Press, 1988: 54
[25] 周尧和. 凝固技术 [M]. 北京: 机械出版社, 1998: 54
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[6] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[7] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[8] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[9] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[10] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[11] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[12] 董瀚,廉心桐,胡春东,陆恒昌,彭伟,赵洪山,徐德祥. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4): 558-582.
[13] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[14] 徐伟,黄明浩,王金亮,沈春光,张天宇,王晨充. 综述:钢中亚稳奥氏体组织与疲劳性能关系[J]. 金属学报, 2020, 56(4): 459-475.
[15] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.