Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 428-434    DOI: 10.11900/0412.1961.2017.00208
  本期目录 | 过刊浏览 |
电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响
程钊1,2, 金帅1, 卢磊1()
1 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu
Zhao CHENG1,2, Shuai JIN1, Lei LU1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
Zhao CHENG, Shuai JIN, Lei LU. Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu[J]. Acta Metall Sin, 2018, 54(3): 428-434.

全文: PDF(2973 KB)   HTML
摘要: 

通过控制直流电解沉积电解液温度制备出不同微观结构的块体纳米孪晶Cu样品。结果表明,当电解液温度由313 K降低至293 K,纳米孪晶Cu的平均晶粒尺寸由27.6 μm减小至2.8 μm,平均孪晶片层厚度由111 nm减小至28 nm。电化学测试表明,降低温度减缓了纳米孪晶Cu沉积的电化学过程,使阴极过电位增大,引起晶粒和孪晶的形核率增加,从而使晶粒尺寸和孪晶片层厚度同时减小。

关键词 直流电解沉积纳米孪晶Cu电解液温度阴极过电位微观结构    
Abstract

Nanotwinned (NT) metals are promising structural materials due to their excellent combination of strength and ductility. These superior properties are strongly dependent on the microstructures i.e. the twin length (grain size), the twin thickness and the twin orientation. Understanding the synthesis process and growth mechanism of NT metals is essential for their structure design. In this work, the effect of electrolyte temperature on the microstructures of highly oriented NT Cu samples, including twin thickness and twin length (grain size), are systematically studied. The NT Cu samples were prepared by means of the direct-current electrodeposition at 293, 298, 303, 308 and 313 K, respectively, while other deposition parameters such as current density, concentration of additive and pH value were kept constant. With decreasing the temperature from 313 K to 293 K, the average grain size decreases from 27.6 μm to 2.8 μm and the average twin thickness decreases from 111 nm to 28 nm, which results in an increment of hardness from 0.7 GPa to 1.5 GPa. This is because with decreasing the temperature, the overpotential of cathode for depositing metal elevates, leading to the nucleation rate of both the grain and twin enhanced.

Key wordsdirect-current electrodeposition    nanotwinned Cu    electrolyte temperature    cathode overpotential    microstructure
收稿日期: 2017-06-01     
基金资助:资助项目 国家自然科学基金项目Nos.51420105001、51371171、51471172和51401211及中国科学院前沿科学重点研究计划
作者简介:

作者简介 程 钊,男,1989年生,博士生

图1  不同电解液温度下直流电解沉积纳米孪晶Cu样品截面微观形貌
图2  不同电解液温度下直流电解沉积纳米孪晶Cu样品的晶粒尺寸d与孪晶片层厚度λ的统计分布,以及其平均晶粒尺寸<d>、平均孪晶片层厚度<λ>和硬度随温度T的变化
图3  不同温度下工作电极的开路电位-时间曲线、Tafel极化曲线与交换电流密度i0
图4  不同温度下工作电极的恒电流极化曲线
图5  工作电极恒电流极化曲线中6 s和80 s时过电位η及ηT随温度的变化
[1] Lu L, Shen Y S, Chen X H, et al.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422
[2] Lu L, Chen X H, Huang X, et al.Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323: 607
[3] You Z S, Lu L, Lu K.Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins[J]. Acta Mater., 2011, 59: 6927
[4] Pan Q S, Lu Q H, Lu L.Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins[J]. Acta Mater., 2013, 61: 1383
[5] Pan Q S, Lu L.Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins[J]. Acta Mater., 2014, 81: 248
[6] Chen K C, Wu W W, Liao C N, et al.Observation of atomic diffusion at twin-modified grain boundaries in copper[J]. Science, 2008, 321: 1066
[7] Chen X H, Lu L, Lu K.Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins[J]. Scr. Mater., 2011, 64: 311
[8] Lu K, Lu L, Suresh S.Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science, 2009, 324: 349
[9] Zhang X, Misra A, Wang H, et al.Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning[J]. Acta Mater., 2004, 52: 995
[10] Zhang X, Anderoglu O, Hoagland R G, et al.Nanoscale growth twins in sputtered metal films[J]. JOM, 2008, 60(9): 75
[11] Liu C M, Lin H W, Lu C L, et al.Effect of grain orientations of Cu seed layers on the growth of <111>-oriented nanotwinned Cu[J]. Sci. Rep., 2014, 4: 6123
[12] Liu T C, Liu C M, Hsiao H Y, et al.Fabrication and characterization of (111)-oriented and nanotwinned Cu by Dc electrodeposition[J]. Cryst. Growth Des., 2012, 12: 5012
[13] Jin S, Pan Q S, Lu L.Microstructure dependence of direct-current electrodeposited bulk Cu with preferentially oriented nanotwins on the current densities[J]. Acta Metall. Sin., 2013, 49: 635(金帅, 潘庆松, 卢磊. 电流密度对直流电解沉积纳米孪晶Cu微观结构的影响 [J]. 金属学报, 2013, 49: 635)
[14] Hasegawa M, Mieszala M, Zhang Y C, et al.Orientation-controlled nanotwinned copper prepared by electrodeposition[J]. Electrochim. Acta, 2015, 178: 458
[15] Chan T C, Chueh Y L, Liao C N.Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition[J]. Cryst. Growth Des., 2011, 11: 4970
[16] Jin S, Cheng Z, Pan Q S, et al.Effect of electrolyte additive concentration on microstructure of direct-current electrodeposited nanotwinned Cu[J]. Acta Metall. Sin., 2016, 52: 973(金帅, 程钊, 潘庆松等. 添加剂浓度对直流电解沉积纳米孪晶Cu微观结构的影响 [J]. 金属学报, 2016, 52: 973)
[17] Seo S, Jin S, Wang G, et al.The effect of copper dissolution in acidic electrolyte on the formation of nanotwin in pulse electrodeposited copper[J]. J. Electrochem. Soc., 2014, 161: D425
[18] Natter H, Hempelmann R.Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH[J]. J. Phys. Chem., 1996, 100: 19525
[19] Kang J X, Zhao W Z, Zhang G F.Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings[J]. Surf. Coat. Technol., 2009, 203: 1815
[20] Liao C N, Lin C Y, Huang C L, et al.Morphology, texture and twinning structure of Cu films prepared by low-temperature electroplating[J]. J. Electrochem. Soc., 2013, 160: D3070
[21] Cohen-Atiya M, Mandler D. Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements [J]. J. Electroanal. Chem., 2003, 550-551: 267
[22] Zhang Q B, Hua Y X, Dong T G, et al.Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with [BMIM]HSO4 as additive[J]. J. Appl. Electrochem., 2009, 39: 1207
[23] Cifuentes L, Simpson J.Temperature dependence of the cathodic and anodic kinetics in a copper electrowinning cell based on reactive electrodialysis[J]. Chem. Eng. Sci., 2005, 60: 4915
[24] Nikoli? N D, Pavlovi? L J, Pavlovi? M G, et al.Effect of temperature on the electrodeposition of disperse copper deposits[J]. J. Serb. Chem. Soc., 2007, 72: 1369
[25] Gründer Y, Markovic N M, Thompson P, et al.Temperature effects on the atomic structure and kinetics in single crystal electrochemistry[J]. Surf. Sci., 2015, 631: 123
[26] Li D.Principles of Electrochemistry [M]. 3rd Ed., Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 286(李荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 286)
[27] Mallik A.An analysis on the effect of temperature on electrocrystallization mechanism during deposition of Cu thin films[J]. Trans. Indian Inst. Met., 2013, 66: 79
[28] Milchev A, Montenegro M I.A galvanostatic study of electrochemical nucleation[J]. J. Electroanal. Chem., 1992, 333: 93
[29] Kanani N.Electroplating: Basic Principles, Processes and Practice[M]. Berlin: Elsevier, 2005: 150
[30] Bufford D C, Wang Y M, Liu Y, et al.Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals[J]. MRS Bull., 2016, 41: 286
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[4] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[5] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[6] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[9] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[10] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[11] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[12] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[14] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[15] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.