Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 385-392    DOI: 10.11900/0412.1961.2017.00210
  本期目录 | 过刊浏览 |
Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响
陈胜虎(), 戎利建
中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy
Shenghu CHEN(), Lijian RONG
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(9858 KB)   HTML
摘要: 

采用OM和SEM研究了不同C含量Ni-Fe-Cr合金在950~1050 ℃固溶后的组织变化及其对拉伸性能和晶间腐蚀性能的影响。结果表明,C含量的变化影响固溶处理过程中碳化物的回溶行为和晶粒尺寸,从而造成不同C含量合金力学性能和晶间腐蚀性能的差异。C含量为0.010% (质量分数)时,950 ℃固溶处理可使热加工过程中产生的M23C6碳化物完全回溶,并获得平均晶粒尺寸约38 μm的等轴晶组织;C含量增加到0.026%时,固溶温度提高至1000 ℃可使M23C6碳化物完全回溶,获得平均晶粒尺寸约42 μm的等轴晶组织;C含量在0.010%~0.026%范围内,合金具有较低的晶间腐蚀敏感性,随C含量增加合金的强度升高,延伸率基本没有变化;C含量为0.056%时,1050 ℃固溶处理后,局部区域仍存在未回溶的碳化物,碳化物阻碍晶界迁移使晶粒长大缓慢,造成晶粒尺寸不均匀。同时,未回溶碳化物的存在使合金的强度略有提高,但延伸率降低;未回溶碳化物造成碳化物/基体界面处贫Cr区的出现,显著增加了合金的晶间腐蚀敏感性。

关键词 Ni-Fe-Cr合金固溶处理碳化物拉伸性能晶间腐蚀    
Abstract

Ni-Fe-Cr alloys have been widely used for petrochemical, chemical and nuclear application due to their superior corrosion resistance and good workability. Nowadays, Ni-Fe-Cr alloys with higher strength are demanded for the engineering application. Increasing the carbon content could enhance the strength of Ni-Fe-Cr alloys due to the solid-solution strengthening effect of interstitial carbon atoms. However, an increase in the carbon content would promote the precipitation of carbides, which would reduce the corrosion resistance. In order to optimize the carbon content and determine the solution treatment, microstructure evolution during solution treatment and its effects on the properties of Ni-Fe-Cr alloys with different carbon content were investigated using OM and SEM. The results show that variation in carbon content affects the carbide dissolution and grain size during solution treatment, which affects the mechanical properties and intergranular corrosion susceptibility of Ni-Fe-Cr alloys. For the Ni-Fe-Cr alloy with carbon content of 0.010%, M23C6 carbides produced during the hot-working process do not exist after solution treatment at 950 ℃. For the alloy with carbon content of 0.026%, M23C6 carbides are dissolved into the matrix when the solution temperature increases to 1000 ℃. An increase in the carbon content from 0.010% to 0.026% results in an increased tensile strength and has slightly observable effect on the elongation. The alloys with the carbon content in the range of 0.010%~0.026% have lower intergranular corrosion susceptibility. As the carbon content increases to 0.056%, M23C6 carbides could not be dissolved even at the solution temperature of 1050 ℃, and inhomogenous grain-size distribution is observed. The presence of undissolved M23C6 carbide weakens the solid-solution strengthening effect of carbon atoms, and significantly increases the susceptibility to intergranular corrosion.

Key wordsNi-Fe-Cr alloy    solution treatment    carbide    tensile property    intergranular corrosion
收稿日期: 2017-06-01     
基金资助:资助项目 国家自然科学基金项目No.51401215
作者简介:

作者简介 陈胜虎,男,1986年生,副研究员,博士

引用本文:

陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy. Acta Metall Sin, 2018, 54(3): 385-392.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00210      或      https://www.ams.org.cn/CN/Y2018/V54/I3/385

Alloy Ni Cr Ti Mo Cu Si Al C Mn S P Fe
C1 37.8 22.2 0.79 3.15 1.80 0.43 0.11 0.010 0.62 0.004 0.014 Bal.
C2 37.8 22.3 0.82 3.14 1.77 0.44 0.12 0.026 0.61 0.002 0.017 Bal.
C3 37.9 22.2 0.81 3.13 1.80 0.43 0.13 0.056 0.61 0.002 0.014 Bal.
表1  合金的化学成分
图1  950 ℃固溶处理后合金的微观组织
图2  C3合金中碳化物形貌和EDS分析
图3  1000 oC固溶处理后C2和C3合金的微观组织
图4  1050 ℃固溶处理后C3合金的微观组织
图5  固溶态合金的拉伸断口形貌
Alloy Solution temperature Yield strength Ultimate strength Elongation
MPa MPa %
C1 950 274 559 52.0
C2 1000 291 631 51.5
C3 1050 313 647 48.0
表2  不同C含量合金的室温拉伸性能
图6  固溶态合金晶间腐蚀后的表面形貌
图7  C含量对Ni-Fe-Cr合金平衡相图的影响
[1] Pan Y M, Dunn D S, Cragnolino G A, et al.Grain-boundary chemistry and intergranular corrosion in alloy 825[J]. Metall. Mater. Trans., 2000, 31A: 1163
[2] Persaud S Y, Smith J, Korinek A, et al.High resolution analysis of oxidation in Ni-Fe-Cr alloys after exposure to 315 ℃ deaerated water with added hydrogen[J]. Corros. Sci., 2016, 106: 236
[3] Zhang L N, Szpunar J A, Basu R, et al.Influence of cold deformation on the corrosion behavior of Ni-Fe-Cr alloy 028[J]. J. Alloys Compd, 2014, 616: 235
[4] Zhao Q, Xia S, Zhou B X, et al.Effect of thermal-mechanical processing on the grain boundary character distribution of alloy 825 tubes[J]. Acta Metall. Sin., 2015, 51: 1465(赵清, 夏爽, 周邦新等. 形变及热处理对825合金管材晶界特征分布的影响 [J]. 金属学报, 2015, 51: 1465)
[5] Feng Y, He D L, Gong D S, et al.Corrosion resistance properties of domestic 825 alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 164(冯勇, 何德良, 龚德胜等. 国产825合金的耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2013, 33: 164)
[6] Ganesan P, Clatworthy E F, Harris J A.Development of a time-temperature transformation diagram for alloy 925[J]. Corrosion, 1988, 44: 827
[7] Zhao Z, Li J Y, Dong J X, et al.Oxidation behavior during high temperature homo-genization treatment of cast Ni-Fe based corrosion resistant 925 alloy[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 1(赵展, 李景阳, 董建新等. 925镍铁基耐蚀合金均匀化及高温氧化行为 [J]. 中国腐蚀与防护学报, 2017, 37: 1)
[8] Aytekin H, Ak?in Y.Characterization of borided incoloy 825 alloy[J]. Mater. Des., 2013, 50: 515
[9] Rosenberg S J, Irish C R.Solubility of carbon in 18-percent-chromium-10-percent-nickel austenite[J]. J. Res. Natl. Bur. Stand., 1952, 48: 40
[10] Pardo A, Merino M C, Coy A E, et al.Influence of Ti, C and N concentration on the intergranular corrosion behavior of AISI 316Ti and 321 stainless steels[J]. Acta Mater. 2007, 55: 2239
[11] Gustafson A.Coarsening of TiC in austenitic stainless steel-experiments and simulations in comparison[J]. Mater. Sci. Eng., 2000, A287: 52
[12] Cui Z Q, Qin Y C.Metallography and Heat Treatment [M]. 2nd Ed., Beijing: China Machine Press, 2007: 226(崔忠圻. 覃耀春. 金属学与热处理 [M]. 第2版. 北京: 机械工业出版社, 2007: 226)
[13] NSF825. NAS high corrosion resistant nickel alloy [EB/OL]. Nippon Yakin Kogyo Co., Ltd, 2011,
[14] Song X Y, Gu N J, Liu G Q, et al.Computer simulation of the influence of second-phase particle quantity on matrix grain growth[J]. Acta Metall. Sin., 2000, 36: 592(宋晓艳, 谷南驹, 刘国权等. 第二相粒子含量对基体晶粒长大影响的计算机仿真研究 [J]. 金属学报, 2000, 36: 592)
[15] Chen S H, Zhao M J, Rong L J.Effect of grain size on the hydrogen embrittlement sensitivity of a precipitation strengthened Fe-Ni based alloy[J]. Mater. Sci. Eng., 2014, A594: 98
[16] Fu L M, Shan A D, Wang W.Effect of Nb solute drag and NbC precipitate pinning on the recrystallization grain growth in low carbon Nb-microacloyed steel[J]. Acta Metall. Sin., 2010, 46: 832(付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响 [J]. 金属学报, 2010, 46: 832)
[17] Han L Z, Chen R K, Gu J F, et al.Behavior of austenite grain growth in X12CrMoWVNbN10-1-1 ferrite heat-resistant steel[J]. Acta Metall. Sin., 2009, 45: 1446(韩利战, 陈睿恺, 顾剑锋等. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究 [J]. 金属学报, 2009, 45: 1446)
[18] Hua P T, Shen H S, Tai C T, et al.On the intergranular corrosion of 18-8stainless steel at different potentials[J]. Acta Metall. Sin., 1965, 8: 103(华保定, 沈行素, 戴钟道等. 18铬-8镍型不锈钢的晶间腐蚀与电位的关系 [J]. 金属学报, 1965, 8: 103)
[19] Crum J R, Tassen C S, Nagashima T.Precipitation reactions and corrosion resistance of thermally aged and welded alloy 825 [A]. Corrosion 97[C]. New Orleans, Louisiana: NACE International, 1997: 520
[20] Kokawa H, Shimada M, Sato Y S.Grain-boundary structure and precipitation in sensitized austenitic stainless steel[J]. JOM, 2007, 52(7): 34
[21] Tachibana S, Kuronuma, Yokota T, et al.Effect of hot rolling and cooling conditions on intergranular corrosion behavior in alloy 625 clad steel[J]. Corros. Sci., 2015, 99: 125
[1] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[4] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[5] 杨柯,梁烨,严伟,单以银. (9~12)%Cr马氏体耐热钢中微量B元素的择优分布行为及其对微观组织与力学性能的影响[J]. 金属学报, 2020, 56(1): 53-65.
[6] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[7] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[8] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[9] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[10] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.
[13] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[14] 刘锡荣, 张凯, 夏爽, 刘文庆, 李慧. 690合金中三晶交界及晶界类型对碳化物析出形貌的影响[J]. 金属学报, 2018, 54(3): 404-410.
[15] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.