Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1311-1321    DOI: 10.11900/0412.1961.2017.00521
  本期目录 | 过刊浏览 |
金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响
陈闽东1, 张帆1, 刘智勇1, 杨朝晖2, 丁国清2, 李晓刚1,3()
1 北京科技大学腐蚀与防护中心教育部腐蚀与防护重点实验室 北京 100083
2 钢铁研究总院青岛海洋腐蚀研究所 青岛 266071
3 中国科学院宁波材料技术与工程研究所 宁波 315201
Galvanic Series of Metals and Effect of Alloy Compositions on Corrosion Resistance in Sanya Seawater
Mindong CHEN1, Fan ZHANG1, Zhiyong LIU1, Chaohui YANG2, Guoqing DING2, Xiaogang LI1,3()
1 Key Laboratory for Corrosion and Protection, Ministry of Education, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Qingdao Marine Corrosion Research Institute, Central Iron & Steel Research Insititute, Qingdao 266071, China;
3 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
引用本文:

陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
Mindong CHEN, Fan ZHANG, Zhiyong LIU, Chaohui YANG, Guoqing DING, Xiaogang LI. Galvanic Series of Metals and Effect of Alloy Compositions on Corrosion Resistance in Sanya Seawater[J]. Acta Metall Sin, 2018, 54(9): 1311-1321.

全文: PDF(2167 KB)   HTML
摘要: 

对36种金属材料在三亚海水中的腐蚀电位序、腐蚀电位对潮汐变化的响应以及不同金属合金元素成分对耐三亚海水环境腐蚀的作用进行了研究。结果表明,三亚海水环境中金属材料腐蚀电位的稳定区间较大,腐蚀电位序从高到低为:镍基合金、双相不锈钢、奥氏体不锈钢和紫铜、铁素体不锈钢、马氏体不锈钢、铜合金、低合金钢、碳钢、铸铁、铝合金和铝阳极。碳钢电位随潮汐变化的波动在动力学控制下,高潮位时腐蚀电位较负;在扩散作用控制下,高潮位时腐蚀电位较正。金属腐蚀电位在海水中的波动体现了腐蚀产物膜对扩散控制下的腐蚀具有阻碍作用。在三亚海水环境中,低C和高合金元素含量的碳钢对氧扩散抑制作用较好。奥氏体不锈钢的腐蚀电位随潮汐变化的波动远小于铁素体不锈钢和马氏体不锈钢,浸泡2700 h后,含Mo的奥氏体不锈钢和马氏体不锈钢有较为稳定的腐蚀电位,腐蚀产物膜具有较好的保护性。铝阳极在三亚海水环境中的腐蚀电位随海水高含氧量时间的增加而上升,含Ga和高Zn含量的铝阳极材料的腐蚀电位较为稳定。Al青铜和T2紫铜在三亚海水环境中有较稳定的腐蚀电位,并且有较好的耐蚀性。

关键词 金属材料三亚海水环境腐蚀电位序合金成分潮汐    
Abstract

With the development of ocean engineering, various metallic materials have been applied to the marine environment. It is an urgent requirement to study the galvanic series and alloy composition optimization of metallic materials in the tropical marine environment. In this work, open circuit potentials (OCP) and galvanic series of 36 kinds of metallic materials in Sanya seawater were studied. By considering the response of OCP to tidal changes, the anti-corrosion effects of alloying elements were also analyzed. The results show that the OCP of metallic materials in Sanya seawater has a large range. The galvanic series order of metallic materials from high to low in Sanya seawater is: nickel alloy, duplex stainless steel, austenitic stainless steel and pure copper, ferritic stainless steel, martensitic stainless steel, copper alloy, low alloy steel, carbon steel, cast iron, aluminum alloy and aluminum anode. Low-carbon high-alloy content carbon steel and high Cr, Ni contents stainless steel have higher OCP. The potential fluctuations of carbon steel with tidal changes involves two phases: (1) under the dynamics control, the OCP of carbon steel is more negative at high tide; (2) under the diffusion control, the OCP is more positive at high tide. The potential fluctuations of metallic materials reflect the effect of the corrosion product film on the change of ionization balance, and metals with less potential fluctuations have better inhibition on ion diffusion. In Sanya seawater, the carbon steel, which has more alloying content and less carbon content, has less potential fluctuations with the tidal changes and has good oxygen diffusion resistance. The potential fluctuations of austenitic stainless steel with tidal changes are less than that of ferritic stainless steel and martensitic stainless steel. After 2700 h immersion, austenitic stainless steel and martensitic stainless steel, which have a higher content of Mo, have more stable OCP. In other words, the corrosion film gets a better corrosion resistance. The OCP of aluminum anode in Sanya seawater environment increases when the oxygen content is brought up. The OCP of Zn-containing or Ga-containing aluminum anode remains relatively stable. Al bronze and T2 copper have less potential fluctuations with tidal changes, and perform good corrosion resistance in Sanya seawater.

Key wordsmetallic material    Sanya seawater environment    galvanic series    alloy composition    tide
收稿日期: 2017-12-06     
ZTFLH:  TG172.5  
基金资助:国家重点基础研究发展计划项目No.2014CB643300和国家重点研发计划项目No.2016YFB0300604
作者简介:

作者简介 陈闽东,男,1988年生,博士生

Material C Si Mn P S Ni Cr Cu Others Fe
HT200 4.13 1.60 1.01 0.092 0.045 - - - - Bal.
QT500 3.95 1.62 0.16 0.072 0.014 - - - - Bal.
Q235 0.16 0.096 0.32 0.024 0.0086 0.015 0.042 0.050 Mo 0.042; Al 0.021 Bal.
Pure Q235 0.042 0.18 0.35 0.008 0.0030 - - - Al 0.029 Bal.
Q345B 0.17 0.22 0.88 0.018 0.0050 - - - Al 0.023 Bal.
D36 0.072 0.14 1.22 0.012 0.0034 - - - Nb 0.015; Ti 0.018; Al 0.039 Bal.
Q345DZ35 0.10 0.28 1.42 0.010 0.0020 - - - - Bal.
Q450NQR1 0.070 0.33 1.04 0.017 0.0079 0.13 0.62 0.26 Nb 0.026; Ti 0.017; Al 0.029 Bal.
921 0.12 0.33 0.37 0.080 0.040 2.72 1.05 - Mo 0.24; V 0.080 Bal.
X70 0.067 0.18 1.54 0.013 0.0027 - 0.21 - Mo 0.058; Al 0.038; Bal.
Nb 0.063; Ti 0.018
X80 0.040 0.30 1.79 0.013 0.0010 - 0.025 - - Bal.
E460 0.060 0.17 1.50 0.014 0.0020 0.40 0.25 0.26 Mo 0.20; Ti 0.012; Bal.
Nb 0.020; Al 0.026
E690 0.11 0.29 1.12 0.013 0.0030 0.41 0.46 0.27 Mo 0.41; Ti 0.019; B 0.015; Bal.
V 0.030; Al 0.036
Super fine grain 0.097 0.26 1.64 0.010 0.0060 - - 0.20 V 0.067; Nb 0.048; Bal.
steel 1 Ti 0.017; N 0.0040
Super fine grain 0.091 0.21 0.40 0.013 0.016 - - 0.040 N 0.0028 Bal.
steel 2
Micro-alloy steel 0.064 0.22 1.18 0.008 0.0050 - - 0.32 V 0.049; Nb 0.035; Bal.
Ti 0.014; N 0.033
表1  铸铁、碳钢和低合金钢材料的化学成分
Material C Si Mn P S Ni Cr Mo Others Fe
PH13-8Mo 0.041 0.055 - 0.0053 0.0016 8.50 12.56 2.31 Al 1.21 Bal.
15-5PH 0.033 0.43 0.51 0.0060 0.0020 4.61 14.37 0.26 N 0.035; Al 0.0030 Bal.
304 0.049 0.30 0.92 0.028 0.0030 8.27 18.19 0.20 V 0.040 Bal.
316L 0.022 0.69 0.97 0.028 0.0030 10.03 16.28 2.16 - Bal.
317L 0.048 0.33 1.18 0.036 0.0018 8.21 18.34 0.063 N 0.048 Bal.
Cr-Mn-N stainless steel 0.026 0.58 4.69 0.023 0.0057 1.31 21.03 0.010 N 0.23; Al 0.011 Bal.
444 0.010 0.22 0.060 0.013 0.0010 0.10 17.82 1.88 Nb 0.21; Ti 0.16; Bal.
N 0.011
2205 0.023 0.34 0.96 0.025 0.0010 5.18 22.54 3.18 N 0.15 Bal.
表2  不锈钢材料的化学成分
Material Zn Si Fe Mn In Mg Cu Cr Ga Bi Al
1100 0.0070 0.063 0.29 0.14 - - 0.011 - - - Bal.
5052 0.040 0.090 0.28 0.040 - 2.57 0.050 0.20 - - Bal.
5083 0.010 0.10 0.33 0.68 - 4.34 0.004 0.086 - - Bal.
AlZnGaSi 2.64 0.30 0.056 - - - - - 3.20 - Bal.
AlZnInBiSi 0.46 0.30 0.067 - 0.012 - - - - 0.55 Bal.
AlZnInSi 5.32 0.054 0.096 - 0.024 - - - - - Bal.
表3  铝合金和铝阳极材料的化学成分
Material Zn Fe Mn Al Ni Cu
T2 - - - - - 99.98
Al bronze - 0.042 1.84 8.89 - Bal.
HAl77-2 21.53 0.020 - 1.98 - Bal.
B10 0.0066 1.65 0.90 - 10.25 Bal.
表4  铜合金材料的化学成分
Material C Si Mn S Cr Mo Fe W Co Ni
N06625 0.0500 0.170 0.012 0.0014 21.63 9.54 - - - Bal.
N10276 0.0092 0.027 0.380 0.0015 16.00 17.00 5.69 3.58 0.50 Bal.
表5  镍基合金材料的化学成分
图1  测试时间内三亚海水潮位的变化
图2  铸铁、碳钢和低合金钢在三亚海水环境的腐蚀电位-时间曲线
图3  碳钢和低合金钢在三亚海水中腐蚀电位波动与潮汐变化
图4  不锈钢在三亚海水环境的腐蚀电位-时间曲线
图5  不锈钢在三亚海水中的腐蚀电位波动与潮汐变化
图6  铝合金和铝阳极在三亚海水环境的腐蚀电位-时间曲线
图7  铝合金和铝阳极在三亚海水中的腐蚀电位波动与潮汐变化
图8  铜合金和镍基合金在三亚海水环境的腐蚀电位-时间曲线
图9  铜合金和镍基合金在三亚海水中的腐蚀电位波动与潮汐变化
图10  36种金属材料在三亚海水环境中的腐蚀电位序
[1] Hou B R, Li X G, Ma X M, et al.The cost of corrosion in China[J]. npj Mater. Degrad., 2017, 1: 4
[2] Sun F L, Ren S, Li Z, et al.Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments[J]. Mater. Sci. Eng., 2017, A685: 145
[3] Li T, Li X G, Dong C F, et al.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19: 591
[4] Ma Y T, Li Y, Wang F H.The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
[5] Wu J J, Zhang D, Wang P, et al.The influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the corrosion of Q235 carbon steel in natural seawater[J]. Corros. Sci., 2016, 112: 552
[6] Matsukawa Y, Chuta H, Miyashita M, et al.Galvanic series of metals conventionally used in tap water with and without flow and its comparison to that in seawater[J]. Corrosion, 2011, 67: 1389
[7] Tewary N K, Kundu A, Nandi R, et al.Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel[J]. Corros. Sci., 2016, 113: 57
[8] Liu M, Cheng X Q, Li X G, et al.Corrosion behavior and durability of low-alloy steel rebars in marine environment[J]. J. Mater. Eng. Perform., 2016, 25: 4967
[9] Mu X, Wei J, Dong J H, et al.In situ corrosion monitoring of mild steel in a simulated tidal zone without marine fouling attachment by electrochemical impedance spectroscopy[J]. J. Mater. Sci. Technol., 2014, 30: 1043
[10] Gao L F, Du M.Pitting corrosion behavior of 304 stainless steel in desalination seawater[J]. Corros. Sci. Prot. Technol., 2017, 29: 8(高丽飞, 杜敏. 304不锈钢在淡化海水中的点蚀行为[J]. 腐蚀科学与防护技术, 2017, 29: 8)
[11] Thierry D, Leballeur C, Larché N.Galvanic series in seawater as a function of temperature, oxygen content and chlorination[J]. Corrosion, 2018, 74: 147
[12] Sun F L, Li X G, Lu L, et al.Corrosion behavior of copper alloys in deep ocean environment of South China Sea[J]. Acta Metall. Sin., 2013, 49: 1211(孙飞龙, 李晓刚, 卢琳等. 铜合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49: 1211)
[13] Basumatary J, Wood R J K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution [J]. Wear, 2017, 376-377: 1286
[14] Mameng S H, Pettersson R, Leygraf C.Effect of stainless steel composition on atmospheric corrosion resistance at a marine site in Dubai[J]. Corrosion, 2017, 73: 880
[15] Sun F L, Li X G, Lu L, et al.Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea[J]. Acta Metall. Sin., 2013, 49: 1219(孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49: 1219)
[16] Fin?gar M.Galvanic series of different stainless steels and copper-and aluminium-based materials in acid solutions[J]. Corros. Sci., 2013, 68: 51
[17] Song W X.Metallography [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 1989: 421(宋维锡. 金属学[M]. 第二版. 北京: 冶金工业出版社, 1989: 421)
[18] Hernandez-Sandoval J, Gonzalez-Lopez R, Hernandez-Rodriguez M A L, et al. Localized corrosion in an electrical submergible pump (ESP)[J]. Eng. Fail. Anal., 2015, 53: 124
[19] Bokati K S, Dehghanian C, Yari S.Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1H-benzotriazole, sodium molybdate and sodium phosphate[J]. Corros. Sci., 2017, 126: 272
[20] Li X G, Zhang D W, Liu Z Y, et al.Materials science: Share corrosion data[J]. Nature, 2015, 527: 441
[21] Morcillo M, Díaz I, Chico B, et al.Weathering steels: From empirical development to scientific design. A review[J]. Corros. Sci., 2014, 83: 6
[22] Zhou Y L, Chen J, Xu Y, et al.Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl- containing environment[J]. J. Mater. Sci. Technol., 2013, 29: 168
[23] Huang G Q.Study of the corrosion potential of metals in seawater[J]. Corros. Prot., 2000, 21(1): 8(黄桂桥. 金属在海水中的腐蚀电位研究[J]. 腐蚀与防护, 2000, 21(1): 8)
[24] Liu D Y, Wei K J.Corrosion potentials of metals in natural sea water of South China Sea[J]. Corros. Sci. Prot. Technol., 1991, 11: 330(刘大扬, 魏开金. 金属在南海海域腐蚀电位研究[J]. 腐蚀科学与防护技术, 1999, 11: 330)
[25] Mu X, Wei J, Dong J H, et al.The effect of sacrificial anode on corrosion protection of Q235B steel in simulated tidal zone[J]. Acta Metall. Sin., 2014, 50: 1294(穆鑫, 魏洁, 董建华等. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响[J]. 金属学报, 2014, 50: 1294)
[26] Ding G Q, Yang C H, Huang G Q, et al.Corrosion potential of metals in natural river water[J]. Equip. Environ. Eng., 2017, 14(2): 31(丁国清, 杨朝晖, 黄桂桥等. 金属材料在天然河水中的腐蚀电位研究[J]. 装备环境工程, 2017, 14(2): 31)
[27] Hao W K, Liu Z Y, Wu W, et al.Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments[J]. Mater. Sci. Eng., 2018, A710: 318
[28] Dexter S C, Gao G Y.Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel[J]. Corrosion, 1988, 44: 717
[29] Liu B, Duan J Z, Hou B R.Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater[J]. J. Chin. Soc. Corros. Protect., 2012, 32: 48(刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32: 48)
[30] Fischer D A, Daille L, Aguirre J, et al.Corrosion of stainless steel in simulated tide of fresh natural seawater of South East Pacific[J]. Int. J. Electrochem. Sci., 2016, 11: 6873
[31] Katkar V A, Gunasekaran G.Galvanic corrosion of AA6061 with other ship building materials in seawater[J]. Corrosion, 2015, 72: 400
[32] Ju H, Duan J Z, Yang Y, et al.Mapping the galvanic corrosion of three coupled metal alloys using coupled multielectrode array: Influence of chloride ion concentration[J]. Materials, 2018, 11: 634
[33] Guo J, Yang S W, Shang C J, et al.Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment[J]. Corros. Sci., 2009, 51: 242
[34] Wang Z F, Liu J R, Wu L X, et al.Study of the corrosion behavior of weathering steels in atmospheric environments[J]. Corros. Sci., 2013, 67: 1
[35] Sedriks A J.Plenary lecture—1986: Effects of alloy composition and microstructure on the passivity of stainless steels[J]. Corrosion, 1986, 42: 376
[36] Wu J S, Pang K, Peng D D, et al.Corrosion behaviors of carbon steels in artificially simulated and accelerated marine environment[J]. Int. J. Electrochem. Sci., 2017, 12: 1216
[37] Melchers R E.Effect of small compositional changes on marine immersion corrosion of low alloy steels[J]. Corros. Sci., 2004, 46: 1669
[38] Cheng X Q, Jin Z, Liu M, et al.Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres[J]. Corros. Sci., 2017, 115: 135
[39] Xing P, Lu L, Li X G.Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241(邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241)
[40] Ghahari M, Krouse D, Laycock N, et al.Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: Extraction of pit propagation parameters[J]. Corros. Sci., 2015, 100: 23
[41] Le Bozec N, Compère C, L'Her M, et al. Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater[J]. Corros. Sci., 2001, 43: 765
[42] Zhang T, Yang Y G, Shao Y W, et al.Advances of the analysis methodology for electrochemical noise[J]. J. Chin. Soc. Corros. Protect., 2014, 34: 1(张涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 1)
[43] Li X G, Dong C F, Xiao K, et al.Corrosion behavior and mechanism of typical materials in Xisha ocean atmosphere environment [M]. Beijing: Science Press, 2014: 123(李晓刚, 董超芳, 肖葵等. 西沙海洋大气环境下典型材料腐蚀/老化行为与机理 [M]. 北京: 科学出版社, 2014: 123)
[44] Li J, Mayer J W, Colgan E G.Oxidation and protection in copper and copper alloy thin films[J]. J. Appl. Phys., 1991, 70: 2820
[1] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[2] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[3] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[4] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[5] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[6] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[7] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[8] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[9] 王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
[10] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[11] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[12] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.
[13] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[14] 林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 兼具成骨和抗感染性能的医用金属材料研究进展[J]. 金属学报, 2017, 53(10): 1284-1302.
[15] 吕昭平, 蒋虽合, 何骏阳, 周捷, 宋温丽, 吴渊, 王辉, 刘雄军. 先进金属材料的第二相强化*[J]. 金属学报, 2016, 52(10): 1183-1198.