Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1683-1692    DOI: 10.11900/0412.1961.2018.00341
  力学性能 本期目录 | 过刊浏览 |
氢化空位的基本性质及其对金属力学行为的影响
孙军(), 李苏植, 丁向东, 李巨
西安交通大学金属材料强度国家重点实验室 西安 710049
Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals
Jun SUN(), Suzhi LI, Xiangdong DING, Ju LI
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(3647 KB)   HTML
摘要: 

金属和合金材料中广泛存在着氢脆现象,即由于氢的渗入使得材料的塑性变形能力显著下降,导致材料倾向于发生脆性或准脆性断裂。尽管氢诱发材料失效的问题被研究了很多年,但微观机理一直存在着广泛争议。本文以近年来的研究结果为基础,提出了“氢化空位”的概念(即氢-空位复合体),认为其是氢致材料失效初期微观结构的最小载体。利用多尺度模拟并结合实验测试,揭示出氢化空位不同于空位的特殊性质,研究了氢环境下在塑性变形中氢化空位的产生、聚集并经过长时间演化形成纳米孔洞的过程,构建出原子尺度事件与微观失效之间的联系。该研究丰富了对氢脆微观机制的理解,同时氢化空位的概念也为揭示氢环境下的其它特殊力学行为提供了思路。

关键词 氢脆氢化空位纳米孔洞塑性变形    
Abstract

Hydrogen embrittlement, the degradation of mechanical behaviors due to the existence of hydrogen, is an industrially and environmentally critical problem in metals and alloys. Yet the fundamental mechanism(s) of embrittlement are still controversial, and the molecular-level damage events shrouded in mystery. In hydrogen embrittlement phenomena, the molecular-level agents of damage are hypothesized to be hydrogen-vacancy complex (Va+nH→VaHn), hereupon called hydrogenated vacancy. Contrary to vacancy, hydrogen-vacancy complex has good thermal stability and low diffusivity. When metals undergo plastic deformation at low homologous temperature in the presence of hydrogen, the mechanically driven out-of-equilibrium dislocation processes produce extremely high concentrations of hydrogen-vacancy complexes. Under such high concentrations, these complexes prefer to grow by absorbing additional vacancies and act as the embryos for the formation of proto nano-voids. Our work provides the insight on the microscopic mechanism of hydrogen embrittlement. Moreover, this work also helps understanding some unique mechanical behaviors induced by hydrogen.

Key wordshydrogen embrittlement    hydrogenated vacancy    nano-void    plastic deformation
收稿日期: 2018-07-20     
ZTFLH:  TB303  
基金资助:国家自然科学基金创新研究群体项目No.51621063,国家重大国际(地区)合作项目No.51320105014
作者简介:

作者简介 孙 军,男,1959年生,教授

引用本文:

孙军, 李苏植, 丁向东, 李巨. 氢化空位的基本性质及其对金属力学行为的影响[J]. 金属学报, 2018, 54(11): 1683-1692.
Jun SUN, Suzhi LI, Xiangdong DING, Ju LI. Hydrogenated Vacancy: Basic Properties and Its Influence on Mechanical Behaviors of Metals. Acta Metall Sin, 2018, 54(11): 1683-1692.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00341      或      https://www.ams.org.cn/CN/Y2018/V54/I11/1683

Method VaH VaH2 VaH3 VaH4 VaH5 VaH6
MD[16] 0.603 0.603 0.425 0.346 0.217 0.158
DFT[15] 0.559 0.612 0.399 0.276 0.335 -0.019
表1  金属α-Fe中VaHn (n=1~6)的平均结合能[15,16]
图1  氢化空位、空位和氢在α-Fe中的扩散激活能[16]
图2  金属α-Fe中,4个独立的事件揭示出氢化空位与位错相互作用后仍具有良好稳定性[16]
图3  2个稳定的初始位错构型[16]
图4  不同氢浓度(CH)下,空位和氢化空位的总浓度(CV≡CVa+CVaHn)和氢化空位浓度(CVaHn)随应变(ε)的变化[16]
图5  在CH=10-2条件下,2个体系的应力-应变曲线及CV随ε的变化[16]
图6  动力学Monte Carlo模拟空位/氢化空位的聚集过程
图7  团簇动力学模拟室温下团簇尺寸分布随时间的变化[16]
图8  实验中在管线钢中观察到的氢脆现象[16]
[1] Barnoush A, Horst V.Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation[J]. Acta Mater., 2010, 58: 5274
[2] Myers S M, Baskes M I, Birnbaum H K, et al.Hydrogen interactions with defects in crystalline solids[J]. Rev. Mod. Phys., 1992, 64: 559
[3] Gahr S, Grossbeck M L, Birnbaum H K.Hydrogen embrittlement of Nb I—Macroscopic behavior at low temperatures[J]. Acta Metall., 1977, 25: 125
[4] Gerberich W W, Oriani R A, Lii M J, et al.The necessity of both plasticity and brittleness in the fracture thresholds of iron[J]. Philos. Mag., 1991, 63A: 363
[5] Nakasato F, Bernstein I M.Crystallographic and fractographic studies of hydrogen-induced cracking in purified iron and iron-silicon alloys[J]. Metall. Trans., 1978, 9A: 1317
[6] Birnbaum H K, Sofronis P.Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture[J]. Mater. Sci. Eng., 1994, A176: 191
[7] Robertson I M.The effect of hydrogen on dislocation dynamics[J]. Eng. Fract. Mech., 2001, 68: 671
[8] Nagumo M, Nakamura M, Takai K.Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels[J]. Metall. Mater. Trans., 2001, 32A: 339
[9] Sakaki K, Kawase T, Hirato M, et al.The effect of hydrogen on vacancy generation in iron by plastic deformation[J]. Scr. Mater., 2006, 55: 1031
[10] Takai K, Shoda H, Suzuki H, et al.Lattice defects dominating hydrogen-related failure of metals[J]. Acta Mater., 2008, 56: 5158
[11] Griffith A A.The phenomena of rupture and flow in solids[J]. Philos. Trans. Roy. Soc. London, 1921, 221A: 163
[12] Sarkar S, Li J, Cox W T, et al.Finding activation pathway of coupled displacive-diffusional defect processes in atomistics: Dislocation climb in fcc copper[J]. Phys. Rev., 2012, 86B: 014115
[13] Hayward E, Fu C C.Interplay between hydrogen and vacancies in α-Fe[J]. Phys. Rev., 2013, 87B: 174103
[14] Lu G, Kaxiras E.Hydrogen embrittlement of aluminum: The crucial role of vacancies[J]. Phys. Rev. Lett., 2005, 94: 155501
[15] Tateyama Y, Ohno T.Stability and clusterization of hydrogen-vacancy complexes in α-Fe: An ab initio study[J]. Phys. Rev., 2003, 67B: 174105
[16] Li S Z, Li Y G, Lo Y C, et al.The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe[J]. Int. J. Plast., 2015, 74: 175
[17] Henkelman G, Jonsson H.Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J. Chem. Phys., 2000, 113: 9978
[18] Hirth J P, Lothe J.Theory of Dislocations[M]. 2nd Ed., New York: Wiley, 1992: 1
[19] Militzer M, Sun W P, Jonas J J.Modelling the effect of deformation-induced vacancies on segregation and precipitation[J]. Acta Metall. Mater., 1994, 42: 133
[20] Mecking H, Estrin Y.The effect of vacancy generation on plastic deformation[J]. Scr. Mater., 1980, 14: 815
[21] Kraftmakher Y.Equilibrium vacancies and thermophysical properties of metals[J]. Phys. Rep., 1998, 299: 79
[22] Fischer F D, Svoboda J, Appel F, et al.Modeling of excess vacancy annihilation at different types of sinks[J]. Acta Mater., 2011, 59: 3463
[23] Brailsford A D, Bullough R.The rate theory of swelling due to void growth in irradiated metals[J]. J. Nucl. Mater., 1972, 44: 121
[24] Zehetbauer M.Cold work hardening in stages IV and V of F.C.C. metals—II. Model fits and physical results[J]. Acta Metall. Mater., 1993, 41: 589
[25] Valiev R Z, Ivanisenko Y V, Rauch E F, et al.Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation[J]. Acta Mater., 1996, 44: 4705
[26] Bortz A B, Kalos M H, Lebowitz J L.A new algorithm for Monte Carlo simulation of Ising spin systems[J]. J. Comput. Phys., 1975, 17: 10
[27] Fichthorn K A, Weinberg W H.Theoretical foundations of dynamical monte carlo simulations[J]. J. Chem. Phys., 1991, 95: 1090
[28] Li Y G, Zhou W H, Ning R H, et al.A cluster dynamics model for accumulation of helium in tungsten under helium ions and neutron irradiation[J]. Commun. Comput. Phys., 2012, 11: 1547
[29] Golubov S I, Ovcharenko A M, Barashev A V, et al.Grouping method for the approximate solution of a kinetic equation describing the evolution of point-defect clusters[J]. Philos. Mag., 2001, 81A: 643
[30] Neeraj T, Srinivasan R, Li J.Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J]. Acta Mater., 2012, 60: 5160
[31] Hru?ka P, ?í?ek J, Knapp J, et al. Characterization of defects in titanium created by hydrogen charging[J]. Int. J. Hydrogen Energy, 2017, 42: 22557
[32] Doshida T, Suzuki H, Takai K, et al.Enhanced lattice defect formation associated with hydrogen and hydrogen embrittlement under elastic stress of a tempered martensitic steel[J]. ISIJ Int., 2012, 52: 198
[33] Rosenberg G, Sinaiova I.Evaluation of hydrogen induced damage of steels by different test methods[J]. Mater. Sci. Eng., 2017, A682: 410
[34] Xie D G, Li S Z, Li M, et al.Hydrogenated vacancies lock dislocations in aluminium[J]. Nat. Commun., 2016, 7: 13341
[35] Zhou X, Song J.Effects of alloying elements on vacancies and vacancy-hydrogen clusters at coherent twin boundaries in nickel alloys[J]. Acta Mater., 2018, 148: 9
[36] Li M, Xie D G, Ma E, et al.Effect of hydrogen on the integrity of aluminium-oxide interface at elevated temperatures[J]. Nat. Commun., 2017, 8: 14564
[1] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[2] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[3] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[4] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[5] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[6] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[7] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[8] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[9] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.
[10] 熊健,魏德安,陆宋江,阚前华,康国政,张旭. 位错密度梯度结构Cu单晶微柱压缩的三维离散位错动力学模拟[J]. 金属学报, 2019, 55(11): 1477-1486.
[11] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[12] 张海峰, 闫海乐, 贾楠, 金剑锋, 赵骧. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[14] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[15] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.