Please wait a minute...
金属学报  2018, Vol. 54 Issue (11): 1693-1704    DOI: 10.11900/0412.1961.2018.00331
  力学性能 本期目录 | 过刊浏览 |
金属材料疲劳性能预测统一模型探索
张哲峰(), 刘睿, 张振军, 田艳中, 张鹏
中国科学院金属研究所 沈阳 110016
Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials
Zhefeng ZHANG(), Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. Acta Metall Sin, 2018, 54(11): 1693-1704.

全文: PDF(5438 KB)   HTML
摘要: 

金属材料的疲劳可分为高周疲劳与低周疲劳,通常分别以应力幅与应变幅作为损伤参量;疲劳性能评价标准在高周与低周疲劳交界处的断层导致抗疲劳材料设计与选择的困难。本文通过对纯Cu及Cu-Al系列合金高周、低周(含超低周)疲劳性能与微观损伤机制的系统研究,提出了统一高周与低周性能的三维疲劳性能预测模型,并由其关键参数进一步提出了基于能量的疲劳性能统一评价标准。该模型建立在应力幅-应变幅-疲劳寿命三维坐标系下,可通过投影的方式获得循环应力-应变(CSS)曲线、应力-寿命(S-N)曲线与应变-寿命(E-N)曲线,模型函数在特定条件下也可转化为Basquin公式、Coffin-Manson公式与滞回能模型形式,从而在经典理论基础上为疲劳性能评价与优化问题提供了新的视角。

关键词 金属材料高周疲劳低周疲劳疲劳损伤参量疲劳性能预测    
Abstract

The fatigue of metallic materials can be divided into high-cycle fatigue (HCF) and low-cycle fatigue (LCF); the damage of these two types of fatigue is commonly evaluated through stress amplitude and strain amplitude of cyclic loading, respectively. The mismatch of the evaluation standards between HCF and LCF leads to difficulties in the design and selection of anti-fatigue materials. Under this condition, systematic researches on fatigue properties and microscopic damage mechanisms of HCF, LCF and extra-low-cycle fatigue (ELCF) for pure Cu and Cu-Al alloys were summarized in this work. On the bases of the experimental results, a three-dimensional fatigue model is proposed, which is simultaneously applicable to both the HCF and LCF properties. The model is built up in a three-dimensional coordinate system of stress amplitude-strain amplitude-fatigue life; it could be associated with the cyclic stress-strain (CSS) curve, S-N curve and E-N curve through the projection method, or be transformed into the Basquin equation, Coffin-Manson equation and hysteretic energy model under specific conditions. In this way, this generally applicable fatigue model helps provide a new viewpoint for the evaluation and optimization of fatigue properties based on the classical fatigue theories.

Key wordsmetallic material    high-cycle fatigue    low-cycle fatigue    fatigue damage parameter    fatigue property prediction
收稿日期: 2018-07-18     
ZTFLH:  TG111.8  
基金资助:国家自然科学基金项目Nos.51331007、51501198和51771208,中国科学院战略性先导科技专项项目No.XDB22020202
作者简介:

作者简介 张哲峰,男,1970年生,研究员,博士

图1  纯Cu与Cu-Al合金高周疲劳S-N曲线[12]
图2  纯Cu与Cu-Al合金低周疲劳性能[12]
图3  纯Cu与Cu-Al合金超低周疲劳性能[12]
图4  纯Cu与Cu-Al合金疲劳微观组织演化[12]
图5  三维疲劳模型的构建与投影关系
Microstructure Material lg(σ0 / MPa) lg(ε0 / 106) lgNf0 lg(Wf / (MJm-3))
CG Cu 10.56 4.56 25.96 35.09
5Al 9.80 4.21 46.26 54.26
11Al 10.20 4.52 41.88 50.61
15Al 10.40 4.63 39.91 48.95
FG 5Al 9.94 4.69 44.70 53.33
11Al 9.89 4.85 57.12 65.87
15Al 10.61 5.02 56.96 66.60
UFG Cu 10.30 4.93 37.08 46.30
5Al 9.16 5.08 41.63 49.86
11Al 10.16 5.31 39.72 49.19
15Al 11.23 5.37 42.59 53.19
NG-CR 5Al-CR 11.43 5.48 32.64 43.54
NG-ECAP Cu-ECAP 11.94 5.60 22.31 33.86
5Al-ECAP 11.79 5.66 25.59 37.04
11Al-ECAP 11.69 5.81 27.15 38.65
NG-HPT Cu-HPT 12.27 5.76 20.76 32.79
5Al-HPT 12.48 5.97 22.82 35.26
15Al-HPT 12.28 6.08 23.86 36.22
表1  纯Cu及Cu-Al合金三维疲劳模型特征参数值
图6  三维疲劳模型的验证与平面拟合
图7  基于三维疲劳模型的疲劳性能评价
图8  基于三维疲劳模型的疲劳性能优化思路
[1] Ashby M F.Materials Selection in Mechanical Design[M]. 4th Ed., Burlington: Butterworth-Heinemann, 2010: 1
[2] Meyers M A, Chawla K K.Mechanical Behavior of Materials [M]. 2nd Ed., New York: Cambridge University Press, 2005: 1
[3] Suresh S.Fatigue of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 1
[4] Forrest P G.Fatigue of Metals [M]. Oxford: Pergamon Press, 1962: 1
[5] Zhao S B, Manual of Anti-Fatigue Design [M]. 2nd Ed., Beijing: China Machine Press, 2015: 1(赵少汴. 抗疲劳设计手册 [M]. 第2版. 北京: 机械工业出版社, 2015: 1)
[6] Basquin O H.The exponential law of endurance tests[J]. Am. Soc. Test. Mater., 1910, 10: 625
[7] Coffin L F Jr. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Trans. ASTM, 1954, 76: 931
[8] Manson S S.Behavior of materials under conditions of thermal stress [R]. USA: National Advisory Committee for Aeronautics, 1953
[9] Callister W D Jr, Rethwisch D G. Materials Science and Engineering: An Introduction[M]. 8th Ed., John Wiley and Sons, Inc, 2010: 1
[10] Shao C W, Zhang P, Liu R, et al.Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction[J]. Acta Mater., 2016, 103: 781
[11] Kim Y W, Kim G, Hong S G, et al.Energy-based approach to predict the fatigue life behavior of pre-strained Fe-18Mn TWIP steel[J]. Mater. Sci. Eng., 2011, A528: 4696
[12] Liu R.Investigations on Tensile and Fatigue Properties of Cu-Al alloys [D]. Beijing: University of Chinese Academy of Sciences, 2018(刘睿. 铜铝合金拉伸与疲劳性能研究 [D]. 北京: 中国科学院大学, 2018)
[13] Liu R, Zhang Z J, Zhang P, et al.Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction[J]. Acta Mater., 2015, 83: 341
[14] Shimada K, Komotori J, Shimizu M.The applicability of the Manson-Coffin law and Miner's law to extremely low cycle fatigue[J]. Trans. Jpn. Soc. Mech. Eng., 1987, 53A: 1178
[15] Shao C W, Zhang P, Liu R, et al.A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode[J]. Acta Mater., 2016, 118: 196
[16] An X H, Wu S D, Wang Z G, et al.Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
[17] An X H, Lin Q Y, Wu S D, et al.Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys[J]. Mater. Res. Lett., 2015, 3: 135
[18] Xue P, Huang Z Y, Wang B B, et al.Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure[J]. Sci. China Mater., 2016, 59: 531
[19] Liu R, Tian Y Z, Zhang Z J, et al.Exploring the fatigue strength improvement of Cu-Al alloys[J]. Acta Mater., 2018, 144: 613
[20] Liu R, Tian Y Z, Zhang Z J, et al.Fatigue strength plateau induced by microstructure inhomogeneity[J]. Mater. Sci. Eng., 2017, A702: 259
[21] Liu R, Zhang Z J, Zhang Z F.The criteria for microstructure evolution of Cu and Cu-Al alloys induced by cyclic loading[J]. Mater. Sci. Eng., 2016, A666: 123
[22] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[23] Valiev R.Nanostructuring of metals by severe plastic deformation for advanced properties[J]. Nat. Mater., 2004, 3: 511
[24] H?ppel H W, Zhou Z M, Mughrabi H, et al.Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper[J]. Philos. Mag., 2002, 82A: 1781
[25] Argon A S.Strengthening Mechanisms in Crystal Plasticity [M]. New York: Oxford University Press, 2008: 1
[26] Agnew S R, Vinogradov A Y, Hashimoto S, et al.Overview of fatigue performance of Cu processed by severe plastic deformation[J]. J. Electron. Mater., 1999, 28: 1038
[27] Kocks U F, Mecking H.Physics and phenomenology of strain hardening: The FCC case[J]. Prog. Mater. Sci., 2003, 48: 171
[28] Qu S, An X H, Yang H J, et al.Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. Acta Mater., 2009, 57: 1586
[29] Liu R, Zhang Z J, Li L L, et al.Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys[J]. Sci. Rep., 2015, 5: 9550
[30] Li X Y, Lu K.Playing with defects in metals[J]. Nat. Mater., 2017, 16: 700
[31] Murr L E.Interfacial Phenomena in Metals and Alloys[M]. London: Addison-Wesley Educational Publishers Inc., 1975: 1
[32] An X H, Lin Q Y, Wu S D, et al.Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion[J]. Philos. Mag., 2011, 91: 3307
[1] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[3] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[4] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[6] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[7] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[8] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[9] 温斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为[J]. 金属学报, 2021, 57(11): 1380-1395.
[10] 刘明, 严富文, 高诚辉. 渐进法向力对金属材料微米划痕响应的影响[J]. 金属学报, 2021, 57(10): 1333-1342.
[11] 王鲁宁, 刘丽君, 岩雨, 杨坤, 陆黎立. 蛋白质吸附对医用金属材料体外腐蚀行为的影响[J]. 金属学报, 2021, 57(1): 1-15.
[12] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[13] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[14] 李嘉荣,谢洪吉,韩梅,刘世忠. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9): 1195-1203.
[15] 吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.