|
|
金属催化剂控制生长单壁碳纳米管研究进展 |
吉忠海1,2, 张莉莉1,2, 汤代明1,2( ), 刘畅1,2, 成会明1,3 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 3 清华-伯克利深圳学院 深圳 518055 |
|
A Review on the Controlled Growth of Single-Wall Carbon Nanotubes from Metal Catalysts |
Zhonghai JI1,2, Lili ZHANG1,2, Daiming TANG1,2( ), Chang LIU1,2, Huiming CHENG1,3 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China |
引用本文:
吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
Zhonghai JI,
Lili ZHANG,
Daiming TANG,
Chang LIU,
Huiming CHENG.
A Review on the Controlled Growth of Single-Wall Carbon Nanotubes from Metal Catalysts[J]. Acta Metall Sin, 2018, 54(11): 1665-1682.
[1] | Yao Z, Kane C L, Dekker C.High-field electrical transport in single-wall carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84: 2941 | [2] | Schindler G, Steinlesberger G, Engelhardt M, et al.Electrical characterization of copper interconnects with end-of-roadmap feature sizes[J]. Solid State Electron., 2003, 47: 1233 | [3] | Dürkop T, Getty S A, Cobas E, et al.Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Lett., 2004, 4: 35 | [4] | Avouris P, Chen Z, Perebeinos V.Carbon-based electronics[J]. Nat. Nanotechnol., 2007, 2: 605 | [5] | Berber S, Kwon Y K, Tománek D.Unusually high thermal conductivity of carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84: 4613 | [6] | Krishnan A, Dujardin E, Ebbesen T W, et al.Young's modulus of single-walled nanotubes[J]. Phys. Rev., 1998, 58B: 14013 | [7] | Wang M S, Golberg D, Bando Y.Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects[J]. Adv. Mater., 2010, 22: 4071 | [8] | https://gg-lb.com/asdisp2-65b095fb-30818-.html | [9] | http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2013-05/20/content_204072.htm?div=-1 | [10] | Franklin A D.The road to carbon nanotube transistors[J]. Nature, 2013, 498: 443 | [11] | Kang L X, Hu Y, Zhong H, et al.Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface[J]. Nano Res., 2015, 8: 3694 | [12] | Zhang F, Hou P X, Liu C, et al.Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution[J]. Nat. Commun., 2016, 7: 11160 | [13] | Zhao X L, Yang F, Chen J H, et al.Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors[J]. Nanoscale, 2018, 10: 6922 | [14] | Wang J T, Jin X, Liu Z B, et al.Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity[J]. Nat. Catal., 2018, 1: 326 | [15] | Shulaker M M, Hills G, Patil N, et al.Carbon nanotube computer[J]. Nature, 2013, 501: 526 | [16] | Qiu C G, Zhang Z Y, Xiao M M, et al.Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355: 271 | [17] | /https://managementjournal24.com/199153/global-carbon-nanotube-market-analysis-report-2018-raymor-timesnano-kumho-petrochemical-and-arkema | [18] | /https://ocsial.com/en/news/278 | [19] | Sun D M, Timmermans M Y, Tian Y, et al.Flexible high-performance carbon nanotube integrated circuits[J]. Nat. Nanotechnol., 2011, 6: 156 | [20] | /https://canatu.com | [21] | Wang B W, Jiang S, Zhu Q B, et al.Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits[J]. Adv. Mater., 2018, 30: 1802057 | [22] | Zhang Q, Huang J Q, Qian W Z, et al.The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9: 1237 | [23] | Iijima S, Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363: 603 | [24] | Bethune D S, Kiang C H, De Vries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993, 363: 605 | [25] | Dai H J, Rinzler A G, Nikolaev P, et al.Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chem. Phys. Lett., 1996, 260: 471 | [26] | Cheng H M, Li F, Su G, et al.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys. Lett., 1998, 72: 3282 | [27] | Bachilo S M, Balzano L, Herrera J E, et al.Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst[J]. J. Am. Chem. Soc., 2003, 125: 11186 | [28] | Hata K, Futaba D N, Mizuno K, et al.Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306: 1362 | [29] | Yang F, Wang X, Zhang D Q, et al.Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510: 522 | [30] | Zhang S C, Kang L X, Wang X, et al.Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543: 234 | [31] | Zhang L L, He M S, Hansen T W, et al.Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy[J]. ACS Nano., 2017, 11: 4483 | [32] | Tang D M, Liu C, Yu W J, et al.Structural changes in Iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy[J]. ACS Nano., 2014, 8: 292 | [33] | Liu B L, Tang D M, Sun C H, et al.Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism[J]. J. Am. Chem. Soc., 2010, 133: 197 | [34] | Lin M, Tan J P Y, Boothroyd C, et al. Direct observation of single-walled carbon nanotube growth at the atomistic scale[J]. Nano Lett., 2006, 6: 449 | [35] | Hammer B, Morikawa Y, N?rskov J K.CO chemisorption at metal surfaces and overlayers[J]. Phys. Rev. Lett., 1996, 76: 2141 | [36] | Robertson J.Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires[J]. J. Mater. Chem., 2012, 22: 19858 | [37] | Guillermet A F, H?glund J, Grimvall G.Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure[J]. Phys. Rev., 1992, 45B: 11557 | [38] | Guillermet A F, H?glund J, Grimvall G.Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure[J]. Phys. Rev., 1993, 48B: 11673 | [39] | Meschel S V, Kleppa O J.Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table[J]. J. Alloys Compd., 2001, 321: 183 | [40] | Ding F, Larsson P, Larsson J A, et al.The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes[J]. Nano Lett., 2008, 8: 463 | [41] | Ribas M A, Ding F, Balbuena P B, et al.Nanotube nucleation versus carbon-catalyst adhesion-probed by molecular dynamics simulations[J]. J. Chem. Phys., 2009, 131: 224501 | [42] | Wirth C T, Hofmann S, Robertson J.State of the catalyst during carbon nanotube growth[J]. Diamond Relat. Mater., 2009, 18: 940 | [43] | Penev E S, Ding F, Yakobson B I.Mechanisms and theoretical simulations of the catalytic growth of nanocarbons[J]. MRS Bull., 2017, 42: 794 | [44] | Wang X, He M S, Ding F.Chirality-controlled synthesis of single-walled carbon nanotubes—From mechanistic studies toward experimental realization[J]. Mater. Today. 2018, doi: 10.1016/j.mattod.2018.06.001 | [45] | Haruta M.Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications[J]. Gold Bull., 2004, 37: 27 | [46] | Lang S M, Bernhardt T M, Barnett R N, et al.Size-dependent binding energies of methane to small gold clusters[J]. ChemPhysChem. 2010, 11: 1570 | [47] | Lang S M, Bernhardt T M, Chernyy V, et al.Selective C-H bond cleavage in methane by small gold clusters[J]. Angew. Chem. Int. Ed., 2017, 56: 13406 | [48] | Takagi D, Homma Y, Hibino H, et al.Single-walled carbon nanotube growth from highly activated metal nanoparticles[J]. Nano Lett., 2006, 6: 2642 | [49] | Bhaviripudi S, Mile E, Steiner S A, et al.CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts[J]. J. Am. Chem. Soc., 2007, 129: 1516 | [50] | Homma Y, Liu H P, Takagi D, et al.Single-walled carbon nanotube growth with non-iron-group "catalysts" by chemical vapor deposition[J]. Nano Res., 2009, 2: 793 | [51] | Ghorannevis Z, Kato T, Kaneko T, et al.Narrow-chirality distributed single-walled carbon nanotube growth from nonmagnetic catalyst[J]. J. Am. Chem. Soc., 2010, 132: 9570 | [52] | Homma Y.Gold nanoparticles as the catalyst of single-walled carbon nanotube synthesis[J]. Catalysts, 2014, 4: 38 | [53] | Magnin Y, Amara H, Ducastelle F, et al., Entropy driven stability of chiral single-walled carbon nanotubes, ArXiv: 1803.07350 | [54] | Xu Z W, Qiu L, Ding F.The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth[J]. Chem. Sci., 2018, 9: 3056 | [55] | Zhao Q C, Xu Z W, Hu Y, et al.Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface[J]. Sci. Adv., 2016, 2: e1501729 | [56] | Buffat P, Borel J P.Size effect on the melting temperature of gold particles[J]. Phys. Rev., 1976, 13A: 2287 | [57] | Couchman P R, Jesser W A.Thermodynamic theory of size dependence of melting temperature in metals[J]. Nature, 1977, 269: 481 | [58] | Ding F, Bolton K, Rosén A.Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth[J]. J. Vac. Sci. Technol., 2004, 22A: 1471 | [59] | Lin P A, Gomez-Ballesteros J L, Burgos J C, et al. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles[J]. J. Catal., 2017, 349: 149 | [60] | Diarra M, Zappelli A, Amara H, et al.Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth[J]. Phys. Rev. Lett., 2012, 109: 185501 | [61] | Yazyev O V, Pasquarello A.Effect of metal elements in catalytic growth of carbon nanotubes[J]. Phys. Rev. Lett., 2008, 100: 156102 | [62] | Li P C.Preparation of single-crystal graphite from melts[J]. Nature, 1961, 192: 864 | [63] | Wang M S, Cheng Y, Zhao L, et al.Graphene ingestion and regrowth on "carbon-starved" metal electrodes[J]. ACS Nano., 2017, 11: 10575 | [64] | Magnin Y, Zappelli A, Amara H, et al.Size dependent phase diagrams of nickel-carbon nanoparticles[J]. Phys. Rev. Lett., 2015, 115: 205502 | [65] | Seah C M, Chai S P, Mohamed A R.Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon, 2014, 70: 1 | [66] | Zhang Y, Zhang L Y, Zhou C W.Review of chemical vapor deposition of graphene and related applications[J]. Acc. Chem. Res., 2013, 46: 2329 | [67] | Mu?oz R, Gómez-Aleixandre C.Review of CVD synthesis of graphene[J]. Chem. Vap. Deposit., 2013, 19: 297 | [68] | DePoorter G L, Wallace T C. Diffusion in binary carbides[J]. Adv. High Temp. Chem., 1970, 4: 107 | [69] | Aleksandrov L N, Shchelkonogov V Y.The diffusion of carbon into tungsten and molybdenum at low carbon concentrations[J]. Sov. Powder. Metall. Met. Ceram., 1964, 3: 288 | [70] | Ku?era J, Stránsky K.Diffusion in iron, iron solid solutions and steels[J]. Mater. Sci. Eng., 1982, 52: 1 | [71] | Yokoyama H, Numakura H, Koiwa M.The solubility and diffusion of carbon in palladium[J]. Acta Mater., 1998, 46: 2823 | [72] | McLellan R B, Chraska P. Thermodynamics of iron-carbon solid solutions[J]. Mater. Sci. Eng., 1971, 7: 305 | [73] | Sharma R, Chee S W, Herzing A, et al.Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures[J]. Nano Lett., 2011, 11: 2464 | [74] | Baker R T K, Barber M A, Harris P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J]. J. Catal., 1972, 26: 51 | [75] | Goldberg D, Belton G R.The diffusion of carbon in iron-carbon alloys at 1560 ℃[J]. Metall. Trans., 1974, 5: 1643 | [76] | Hofmann S, Csányi G, Ferrari A C, et al.Surface diffusion: The low activation energy path for nanotube growth[J]. Phys. Rev. Lett., 2005, 95: 036101 | [77] | http://www.crct.polymtl.ca/FACT/documentation/#opennewwindow | [78] | Zhou W W, Han Z Y, Wang J Y, et al.Copper catalyzing growth of single-walled carbon nanotubes on substrates[J]. Nano Lett., 2006, 6: 2987 | [79] | Kiribayashi H, Ogawa S, Kozawa A, et al. Low-temperature growth of single-walled carbon nanotube using Al2O3 /Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum [J]. Jpn. J. Appl. Phys., 2016, 55: 06GF04 | [80] | Maruyama T, Kondo H, Ghosh R, et al.Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum[J]. Carbon, 2016, 96: 6 | [81] | Maruyama T, Kozawa A, Saida T, et al.Low temperature growth of single-walled carbon nanotubes from Rh catalysts[J]. Carbon,2017, 116: 128 | [82] | Rümmeli M H, Sch?ffel F, Kramberger C, et al.Oxide-driven carbon nanotube growth in supported catalyst CVD[J]. J. Am. Chem. Soc., 2007, 129: 15772 | [83] | Huang S M, Cai Q R, Chen J Y, et al.Metal-catalyst-free growth of single-walled carbon nanotubes on substrates[J]. J. Am. Chem. Soc., 2009, 131: 2094 | [84] | Liu B L, Ren W C, Gao L B, et al.Metal-catalyst-free growth of single-walled carbon nanotubes[J]. J. Am. Chem. Soc., 2009, 131: 2082 | [85] | Gao F L, Zhang L J, Huang S M.Zinc oxide catalyzed growth of single-walled carbon nanotubes[J]. Appl. Surf. Sci., 2010, 256: 2323 | [86] | Liu H P, Takagi D, Chiashi S, et al.Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2010, 10: 4068 | [87] | Liu H P, Takagi D, Chiashi S, et al.The growth of single-walled carbon nanotubes on a silica substrate without using a metal catalyst[J]. Carbon, 2010, 48: 114 | [88] | Qian Y, Huang B, Gao F L, et al.Preferential growth of semiconducting single-walled carbon nanotubes on substrate by europium oxide[J]. Nanoscale Res. Lett., 2010, 5: 1578 | [89] | Cheng M, Wang B W, Hou P X, et al.Selective growth of semiconducting single-wall carbon nanotubes using SiC as a catalyst[J]. Carbon, 2018, 135: 195 | [90] | http://periodictable.com/Properties/A/ThermalConductivity.st.log.wt.gif | [91] | Shatynski S R.The thermochemistry of transition metal carbides[J]. Oxid. Met., 1979, 13: 105 | [92] | Madey T E, Yates J T, Stern R C.Isotopic mixing in CO chemisorbed on tungsten. A kinetic study[J]. J. Chem. Phys., 1965, 42: 1372 | [93] | Wert C A.Diffusion coefficient of C in α-ron[J]. Phys. Rev., 1950, 79: 601 | [94] | Fuks D, Mundim K C, Malbouisson L A C, et al. Carbon in copper and silver: Diffusion and mechanical properties[J]. J. Mol. Struct.(Theochem), 2001, 539: 199 | [95] | Chen Y B, Zhang Y Y, Hu Y, et al.State of the art of single-walled carbon nanotube synthesis on surfaces[J]. Adv. Mater., 2014, 26: 5898 | [96] | Tessonnier J P, Su D S.Recent progress on the growth mechanism of carbon nanotubes: A review[J]. ChemSusChem., 2011, 4: 824 | [97] | Hofmann S, Sharma R, Ducati C, et al.In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation[J]. Nano Lett., 2007, 7: 602 | [98] | Yoshida H, Takeda S, Uchiyama T, et al.Atomic-scale in-situ observation of carbon nanotube growth from solid state Iron carbide nanoparticles[J]. Nano Lett., 2008, 8: 2082 | [99] | Wirth C T, Bayer B C, Gamalski A D, et al.The phase of Iron catalyst nanoparticles during carbon nanotube growth[J]. Chem. Mater., 2012, 24: 4633 | [100] | Yasuda S, Futaba D N, Yamada T, et al.Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction[J]. ACS Nano., 2009, 3: 4164 | [101] | Kocabas C, Kang S J, Ozel T, et al.Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors[J]. J. Phys. Chem., 2007, 111C: 17879 | [102] | Hu Y, Kang L X, Zhao Q C, et al.Growth of high-density horizontally aligned SWNT arrays using trojan catalysts[J]. Nat. Commun., 2015, 6: 6099 | [103] | Jiang S, Hou P X, Chen M L, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes [J]. Sci. Adv., 2018, 4: eaap9264 | [104] | He M S, Jiang H, Liu B L, et al.Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles[J]. Sci Rep., 2013, 3: 1460 | [105] | He M S, Wang X, Zhang L L, et al.Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes[J]. Carbon, 2018, 128: 249 | [106] | He M S, Fedotov P V, Chernov A, et al.Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source[J]. Carbon, 2016, 108: 521 | [107] | Harutyunyan A R, Chen G G, Paronyan T M, et al.Preferential growth of single-walled carbon nanotubes with metallic conductivity[J]. Science, 2009, 326: 116 | [108] | Yu B, Liu C, Hou P X, et al.Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition[J]. J. Am. Chem. Soc., 2011, 133: 5232 | [109] | Li W S, Hou P X, Liu C, et al.High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors[J]. ACS Nano., 2013, 7: 6831 | [110] | Hou P X, Li W S, Zhao S Y, et al.Preparation of metallic single-wall carbon nanotubes by selective etching[J]. ACS Nano., 2014, 8: 7156 | [111] | Deck C P, Vecchio K.Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams[J]. Carbon, 2006, 44: 267 | [112] | Karakaya I, Thompson W T.The Ag-C (silver-carbon) system[J]. Bull. Alloy Phase Diagr., 1988, 9: 226 | [113] | Okamoto H, Massalski T B.The Au-C (gold-carbon) system[J]. Bull. Alloy Phase Diagr., 1984, 5: 378 | [114] | Raty J Y, Gygi F, Galli G.Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from Ab initio molecular dynamics simulations[J]. Phys. Rev. Lett., 2005, 95: 096103 | [115] | Takagi D, Kobayashi Y, Hibino H, et al.Mechanism of gold-catalyzed carbon material growth[J]. Nano Lett., 2008, 8: 832 | [116] | Ding L, Yuan D N, Liu J.Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates[J]. J. Am. Chem. Soc., 2008, 130: 5428 | [117] | Cui R L, Zhang Y, Wang J Y, et al.Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates[J]. J. Phys. Chem., 2010, 114C: 15547 | [118] | Zhao X L, Liu Y, Cui R L, et al.Nucleation of copper nanoparticles on quartz as catalysts to grow single-walled carbon nanotube arrays[J]. Carbon, 2016, 110: 390 | [119] | Ahmed S, Aitani A, Rahman F, et al.Decomposition of hydrocarbons to hydrogen and carbon[J]. Appl. Catal., 2009, 359A: 1 | [120] | Ogihara H, Takenaka S, Yamanaka I, et al.Formation of highly concentrated hydrogen through methane decomposition over Pd-based alloy catalysts[J]. J. Catal., 2006, 238: 353 | [121] | Maruyama T, Mizutani Y, Naritsuka S, et al.Single-walled carbon nanotube growth in high vacuum using Pt catalyst in alcohol gas source method[J]. Mater. Express, 2011, 1: 267 | [122] | Murakami T, Mitikami K, Ishigaki S, et al.Catalytic mechanism of a Fe-Co bimetallic system for efficient growth of single-walled carbon nanotubes on Si/SiO2 substrates[J]. J. Appl. Phys., 2006, 100: 094303 | [123] | Chiang W H, Sankaran R M.Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat. Mater., 2009, 8: 882 | [124] | Doustan F, Pasha M A.Growth of carbon nanotubes over Fe-Co and Ni-Co catalysts supported on different phases of TiO2 substrate by thermal CVD[J]. Fullerence Nanotubes Carbon Nanostruct., 2015, 24: 25 | [125] | He M S, Chernov A I, Obraztsova E D, et al.Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes[J]. Carbon, 2013, 52: 590 | [126] | Cui K H, Kumamoto A, Xiang R, et al.Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts[J]. Nanoscale, 2016, 8: 1608 | [127] | Li X L, Tu X M, Zaric S, et al.Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J. Am. Chem. Soc., 2007, 129: 15770 | [128] | He M S, Jin H, Zhang L L, et al.Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes[J]. Carbon, 2016, 110: 243 | [129] | Liu B L, Ren W C, Li S S, et al.High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst[J]. Chem. Commun., 2012, 48: 2409 | [130] | Tang L, Li T T, Li C W, et al.CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes[J]. Nanoscale, 2015, 7: 19699 | [131] | Thurakitseree T, Einarsson E, Xiang R, et al.Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2012, 12: 370 | [132] | Kang L X, Zhang S C, Li Q W, et al.Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition[J]. J. Am. Chem. Soc., 2016, 138: 6727 | [133] | Wang X S, Li Q Q, Xie J, et al.Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates[J]. Nano Lett., 2009, 9: 3137 | [134] | Harutyunyan A R, Pradhan B K, Kim U J, et al.CVD synthesis of single wall carbon nanotubes under "soft" conditions[J]. Nano Lett., 2002, 2: 525 | [135] | Shajahan M, Mo Y H, Kibria A K M F, et al. High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts[J]. Carbon, 2004, 42: 2245 | [136] | Lolli G, Zhang L, Balzano L, et al.Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts[J]. J. Phys. Chem., 2006, 110B: 2108 | [137] | Zoican Loebick C, Derrouiche S, Fang F, et al.Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes[J]. Appl. Catal., 2009, 368: 40 | [138] | Loebick C Z, Derrouiche S, Marinkovic N, et al.Effect of manganese addition to the Co-MCM-41 catalyst in the selective synthesis of single wall carbon nanotubes[J]. J. Phys. Chem., 2009, 113C: 21611 | [139] | Yang F, Wang X, Zhang D Q, et al.Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts[J]. J. Am. Chem. Soc., 2015, 137: 8688 | [140] | Yang F, Wang X, Si J, et al.Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes[J]. ACS nano., 2016, 11: 186 | [141] | Li M H, Yang F, Ding L, et al.Diameter-specific growth of single-walled carbon nanotubes using tungsten supported nickel catalysts[J]. Carbon, 2017, 118: 485 | [142] | Kathyayini H, Nagaraju N, Fonseca A, et al.Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes[J]. J. Mol. Catal., 2004, 223A: 129 | [143] | Dal Santo V, Gallo A, Naldoni A, et al.Bimetallic heterogeneous catalysts for hydrogen production[J]. Catal. Today, 2012, 197: 190 | [144] | Jeong H, Kang M.Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst[J]. Appl. Catal., 2010, 95B: 446 | [145] | Dutta D, Sankaran R M, Bhethanabotla V R.Predicting the chiral enrichment of metallic SWCNTs on Ni-Cu bimetallic surfaces[J]. Chem. Mater., 2014, 26: 4943 | [146] | Yang F, Wang X, Li M H, et al.Templated synthesis of single-walled carbon nanotubes with specific structure[J]. Acc. Chem. Res., 2016, 49: 606 | [147] | Penev E S, Bets K V, Gupta N, et al.Transient kinetic selectivity in nanotubes growth on solid Co-W catalyst[J]. Nano Lett., 2018, 18: 5288 | [148] | Liu H P, Takagi D, Ohno H, et al.Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition[J]. Appl. Phys. Express, 2008, 1: 014001 | [149] | Liu B L, Ren W C, Liu C, et al.Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process[J]. ACS nano., 2009, 3: 3421 | [150] | Zhang L L, Sun D M, Hou P X, et al.Selective growth of metal-free metallic and semiconducting single-wall carbon nanotubes[J]. Adv. Mater., 2017, 29: 1605719 | [151] | Zhang S C, Tong L M, Hu Y, et al.Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst[J]. J. Am. Chem. Soc., 2015, 137: 8904 | [152] | Kang L X, Hu Y, Liu L L, et al.Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts[J]. Nano Lett., 2015, 15: 403 | [153] | Artyukhov V I, Penev E S, Yakobson B I.Why nanotubes grow chiral[J]. Nat. Commun., 2014, 5: 4892 | [154] | Ding F, Harutyunyan A R, Yakobson B I.Dislocation theory of chirality-controlled nanotube growth[J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 2506 | [155] | Zhang L, Tan Y Q, Resasco D E.Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of CoMo catalyst particles[J]. Chem. Phys. Lett., 2006, 422: 198 | [156] | Li P, Zhang X, Liu J.Aligned single-walled carbon nanotube arrays from rhodium catalysts with unexpected diameter uniformity independent of the catalyst size and growth temperature[J]. Chem. Mater., 2016, 28: 870 | [157] | Hong B H, Lee J Y, Beetz T, et al.Quasi-continuous growth of ultralong carbon nanotube arrays[J]. J. Am. Chem. Soc., 2005, 127: 15336 | [158] | Yao Y G, Liu R, Zhang J, et al.Raman spectral measuring of the growth rate of individual single-walled carbon nanotubes[J]. J. Phys. Chem., 2007, 111C: 8407 | [159] | Kozawa A, Kiribayashi H, Ogawa S, et al.Single-walled carbon nanotube growth on SiO2 /Si using Rh catalysts by alcohol gas source chemical vapor deposition[J]. Diamond Relat. Mater., 2016, 63: 159 | [160] | Ding L, Tselev A, Wang J Y, et al.Selective growth of well-aligned semiconducting single-walled carbon nanotubes[J]. Nano Lett., 2009, 9: 800 | [161] | Bouanis F Z, Florea I, Bouanis M, et al.Diameter controlled growth of SWCNTs using Ru as catalyst precursors coupled with atomic hydrogen treatment[J]. Chem. Eng. J., 2018, 332: 92 | [162] | Hong G, Zhang B, Peng B H, et al.Direct growth of semiconducting single-walled carbon nanotube array[J]. J. Am. Chem. Soc., 2009, 131: 14642 | [163] | Li J H, Ke C T, Liu K H, et al.Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes[J]. ACS Nano., 2014, 8: 8564 | [164] | Sabol G P, Stickler R.Microstructure of nickel-based superalloys[J]. Phys. Stat. Sol., 1969, 35: 11 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|