Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 141-148    DOI: 10.11900/0412.1961.2018.00108
  本期目录 | 过刊浏览 |
原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能
姚彦桃1(), 陈礼清2, 王文广1
1 辽宁石油化工大学机械工程学院 抚顺 113001
2 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique
Yantao YAO1(), Liqing CHEN2, Wenguang WANG1
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2 Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
Yantao YAO, Liqing CHEN, Wenguang WANG. Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique[J]. Acta Metall Sin, 2019, 55(1): 141-148.

全文: PDF(6815 KB)   HTML
摘要: 

针对B4C/Mg体系润湿性较差导致复合效率低下的问题,加入高熔点、不互熔金属Ti颗粒来改善该体系的润湿性,并成功利用原位反应浸渗法实现(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的高效、低成本制备。对制备的(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的微观组织、生成物相以及室温和高温阻尼性能进行了分析与表征。结果表明,制备温度对复合材料的微观组织和生成物相有较大的影响;随着制备温度的升高,原始颗粒之间的原位反应程度逐渐趋于完全,(B4C+Ti)/AZ91D复合材料的微观组织逐渐由颗粒增强结构转变为网络互穿结构。(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的室温和高温阻尼性能分别随着应变振幅和温度的升高而增强,主要作用机制为位错阻尼和界面阻尼机制。

关键词 镁基复合材料润湿性原位反应浸渗法微观组织阻尼性能    
Abstract

Mechanical vibration causes lots of damage in automotive industry, machinery manufacturing and aerospace field. Noise control also causes much damage to human health. So it is of great significance to seek materials with high damping capacity to alleviate or eliminate mechanical vibration and noise. Pure Mg has the highest damping capacity among all of the commercial metal materials, but its low mechanical property impose restrictions on its pervasive application. Therefore, magnesium matrix composites reinforced with high mechanical property reinforcement can exhibit excellent damping capacity and mechanical property simultaneously, and this kind of material has attracted great attention and interest from researchers in recent years. A variety of preparation methods has been utilized to prepare magnesium matrix composites reinforced with different reinforcements. In situ reactive infiltration is a relatively new processing method to prepare metal matrix composites, which combines the advantages of in situ reaction synthesis and pressureless infiltration, and it has received increasing attention because of its cost-effectiveness, simplicity and high-efficiency, and near-net shaping capability. And by tailoring the relative density of preform, magnesium matrix composites with a high volume fraction of ceramic reinforcement can be obtained. In view of the poor wettability of B4C/Mg system leading to low efficiency of composite, Ti particulates with high melting point and immiscible with magnesium was added. And (B4C+Ti)/Mg and (B4C+Ti)/AZ91D composites have been prepared successfully by in situ reactive infiltration method with high efficiency and low cost. Microstructure, phase composition and damping capacities of the as-fabricated composites were characterized and analyzed. Results showed that with increasing the preparation temperatures, the reaction between the starting materials is more complete, and the microstructure of (B4C+Ti)/AZ91D composites tends to be interpenetrating networks from particle reinforced structure. The strain-dependent and temperature-dependent damping capacities of (B4C+Ti)/Mg and (B4C+Ti)/AZ91D composites improve gradually with the increase of strain amplitude and temperature respectively, and the dominant damping mechanisms are dislocation damping and interface damping.

Key wordsmagnesium matrix composite    wettability    in situ reactive infiltration    microstructure    damping capacity
收稿日期: 2018-03-21     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目 No.51271051
作者简介:

作者简介 姚彦桃,女,1987年生,博士

图1  原位反应浸渗法制备(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的工艺流程图
图2  原始增强颗粒B4C和Ti的SEM像
图3  不同温度制备的(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的SEM像
图4  不同温度制备的(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的XRD谱
图5  不同温度制备的复合材料与基体金属应变振幅内耗谱的比较
图6  不同温度制备的复合材料与基体金属的Granato-Lücke曲线
图7  (B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料中位错形貌的TEM像
图8  不同温度制备的复合材料与基体金属温度内耗谱的比较
图9  (B4C+Ti)/Mg复合材料中原位增强相TiB的TEM像及SAED花样
[1] Carvalho O, Miranda G, Buciumeanu M, et al.High temperature damping behavior and dynamic Young's modulus of AlSi-CNT-SiCp hybrid composite[J]. Compos. Struct., 2016, 141: 155
[2] Jiang H J, Liu C Y, Zhang B, et al.Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing[J]. Mater. Charact., 2017, 131: 425
[3] Li Q Y, Li J, He G.Compressive properties and damping capacities of magnesium reinforced with continuous steel wire[J]. Mater. Sci. Eng., 2017, A680: 92
[4] Deng K K, Li J C, Nie K B, et al.High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp[J]. Mater. Sci. Eng., 2015, A624: 62
[5] Wu Y W, Wu K, Deng K K, et al.Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles[J]. Mater. Des., 2010, 31: 4862
[6] Wang C J, Deng K K, Liang W.High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite[J]. Mater. Sci. Eng., 2016, A668: 55
[7] Habibi M K, Hamouda A M S, Gupta M. Enhancing tensile and compressive strength of magnesium using ball milled Al+CNT reinforcement[J]. Compos. Sci. Technol., 2012, 72: 290
[8] Kevorkijan V, ?kapin S D.Mg/B4C composites with a high volume fraction of fine ceramic reinforcement[J]. Mater. Manuf. Processes, 2009, 24: 1337
[9] Yao J P, Li W, Zhang L, et al.RETRACTED ARTICLE: Wear mechanism for in situ TiC particle reinforced AZ91 magnesium matrix composites[J]. Tribol. Lett., 2010, 38: 253
[10] Yao Y T, Chen L Q.Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique[J]. J. Mater. Sci. Technol., 2014, 30: 661
[11] Chen L Q, Yao Y T.Processing, microstructures, and mechanical properties of magnesium matrix composites: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 762
[12] Sahoo B N, Panigrahi S K.Synthesis, characterization and mechanical properties of in-situ (TiC-TiB2) reinforced magnesium matrix composite[J]. Mater. Des., 2016, 109: 300
[13] Chen L Q, Dong Q, Zhao M J, et al.Synthesis of TiC/Mg composites with interpenetrating networks by in situ reactive infiltration process[J]. Mater. Sci. Eng., 2005, A408: 125
[14] Schaller R.Metal matrix composites, a smart choice for high damping materials[J]. J. Alloys Compd., 2003, 335: 131
[15] Zhang X Q, Wang H W, Liao L H, et al.In situ synthesis method and damping characterization of magnesium matrix composites[J]. Compos. Sci. Technol., 2007, 67: 720
[16] Wu Y W, Wu K, Nie K B, et al.Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites[J]. Mater. Sci. Eng., 2010, A527: 7873
[17] Anasori B, Barsoum M W.Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles[J]. Mater. Sci. Eng., 2016, A653: 53
[18] Zhang X Q, Liao L H, Ma N H, et al.Mechanical properties and damping capacity of magnesium matrix composites[J]. Composites, 2006, 37A: 2011
[19] Huang W Z, Luo H J, Mu Y L, et al.Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles[J]. Int. J. Min. Metall. Mater., 2017, 24: 701
[20] Gu J H, Zhang X N, Qiu Y F, et al.Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates[J]. Compos. Sci. Technol., 2005, 65: 1736
[21] Wang H Y, Jiang Q C, Zhao Y Q, et al.Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2004, A372: 109
[22] Shen P, Zou B L, Jin S B, et al. Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system [J]. Mater. Sci. Eng., 2007, A454-455: 300
[23] Prasad D S, Shoba C.Experimental evaluation onto the damping behavior of Al/SiC/RHA hybrid composites[J]. J. Mater. Res. Technol., 2016, 5: 123
[24] Cao W, Zhang C F, Fan T X, et al.In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2008, A496: 242
[25] Liu Y C, Li J F, Yang G C, et al.High damping functional materials prepared by spray deposition[J]. J. Mater. Process Technol., 2000, 106: 94
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.