Please wait a minute...
金属学报  2019, Vol. 55 Issue (1): 141-148    DOI: 10.11900/0412.1961.2018.00108
  本期目录 | 过刊浏览 |
姚彦桃1(), 陈礼清2, 王文广1
1 辽宁石油化工大学机械工程学院 抚顺 113001
2 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique
Yantao YAO1(), Liqing CHEN2, Wenguang WANG1
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2 Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(6815 KB)   HTML


关键词 镁基复合材料润湿性原位反应浸渗法微观组织阻尼性能    

Mechanical vibration causes lots of damage in automotive industry, machinery manufacturing and aerospace field. Noise control also causes much damage to human health. So it is of great significance to seek materials with high damping capacity to alleviate or eliminate mechanical vibration and noise. Pure Mg has the highest damping capacity among all of the commercial metal materials, but its low mechanical property impose restrictions on its pervasive application. Therefore, magnesium matrix composites reinforced with high mechanical property reinforcement can exhibit excellent damping capacity and mechanical property simultaneously, and this kind of material has attracted great attention and interest from researchers in recent years. A variety of preparation methods has been utilized to prepare magnesium matrix composites reinforced with different reinforcements. In situ reactive infiltration is a relatively new processing method to prepare metal matrix composites, which combines the advantages of in situ reaction synthesis and pressureless infiltration, and it has received increasing attention because of its cost-effectiveness, simplicity and high-efficiency, and near-net shaping capability. And by tailoring the relative density of preform, magnesium matrix composites with a high volume fraction of ceramic reinforcement can be obtained. In view of the poor wettability of B4C/Mg system leading to low efficiency of composite, Ti particulates with high melting point and immiscible with magnesium was added. And (B4C+Ti)/Mg and (B4C+Ti)/AZ91D composites have been prepared successfully by in situ reactive infiltration method with high efficiency and low cost. Microstructure, phase composition and damping capacities of the as-fabricated composites were characterized and analyzed. Results showed that with increasing the preparation temperatures, the reaction between the starting materials is more complete, and the microstructure of (B4C+Ti)/AZ91D composites tends to be interpenetrating networks from particle reinforced structure. The strain-dependent and temperature-dependent damping capacities of (B4C+Ti)/Mg and (B4C+Ti)/AZ91D composites improve gradually with the increase of strain amplitude and temperature respectively, and the dominant damping mechanisms are dislocation damping and interface damping.

Key wordsmagnesium matrix composite    wettability    in situ reactive infiltration    microstructure    damping capacity
收稿日期: 2018-03-21     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目 No.51271051

作者简介 姚彦桃,女,1987年生,博士


姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
Yantao YAO, Liqing CHEN, Wenguang WANG. Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique. Acta Metall Sin, 2019, 55(1): 141-148.

链接本文:      或

图1  原位反应浸渗法制备(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的工艺流程图
图2  原始增强颗粒B4C和Ti的SEM像
图3  不同温度制备的(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的SEM像
图4  不同温度制备的(B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料的XRD谱
图5  不同温度制备的复合材料与基体金属应变振幅内耗谱的比较
图6  不同温度制备的复合材料与基体金属的Granato-Lücke曲线
图7  (B4C+Ti)/Mg和(B4C+Ti)/AZ91D复合材料中位错形貌的TEM像
图8  不同温度制备的复合材料与基体金属温度内耗谱的比较
图9  (B4C+Ti)/Mg复合材料中原位增强相TiB的TEM像及SAED花样
[1] Carvalho O, Miranda G, Buciumeanu M, et al.High temperature damping behavior and dynamic Young's modulus of AlSi-CNT-SiCp hybrid composite[J]. Compos. Struct., 2016, 141: 155
[2] Jiang H J, Liu C Y, Zhang B, et al.Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing[J]. Mater. Charact., 2017, 131: 425
[3] Li Q Y, Li J, He G.Compressive properties and damping capacities of magnesium reinforced with continuous steel wire[J]. Mater. Sci. Eng., 2017, A680: 92
[4] Deng K K, Li J C, Nie K B, et al.High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp[J]. Mater. Sci. Eng., 2015, A624: 62
[5] Wu Y W, Wu K, Deng K K, et al.Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles[J]. Mater. Des., 2010, 31: 4862
[6] Wang C J, Deng K K, Liang W.High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite[J]. Mater. Sci. Eng., 2016, A668: 55
[7] Habibi M K, Hamouda A M S, Gupta M. Enhancing tensile and compressive strength of magnesium using ball milled Al+CNT reinforcement[J]. Compos. Sci. Technol., 2012, 72: 290
[8] Kevorkijan V, ?kapin S D.Mg/B4C composites with a high volume fraction of fine ceramic reinforcement[J]. Mater. Manuf. Processes, 2009, 24: 1337
[9] Yao J P, Li W, Zhang L, et al.RETRACTED ARTICLE: Wear mechanism for in situ TiC particle reinforced AZ91 magnesium matrix composites[J]. Tribol. Lett., 2010, 38: 253
[10] Yao Y T, Chen L Q.Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique[J]. J. Mater. Sci. Technol., 2014, 30: 661
[11] Chen L Q, Yao Y T.Processing, microstructures, and mechanical properties of magnesium matrix composites: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 762
[12] Sahoo B N, Panigrahi S K.Synthesis, characterization and mechanical properties of in-situ (TiC-TiB2) reinforced magnesium matrix composite[J]. Mater. Des., 2016, 109: 300
[13] Chen L Q, Dong Q, Zhao M J, et al.Synthesis of TiC/Mg composites with interpenetrating networks by in situ reactive infiltration process[J]. Mater. Sci. Eng., 2005, A408: 125
[14] Schaller R.Metal matrix composites, a smart choice for high damping materials[J]. J. Alloys Compd., 2003, 335: 131
[15] Zhang X Q, Wang H W, Liao L H, et al.In situ synthesis method and damping characterization of magnesium matrix composites[J]. Compos. Sci. Technol., 2007, 67: 720
[16] Wu Y W, Wu K, Nie K B, et al.Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites[J]. Mater. Sci. Eng., 2010, A527: 7873
[17] Anasori B, Barsoum M W.Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles[J]. Mater. Sci. Eng., 2016, A653: 53
[18] Zhang X Q, Liao L H, Ma N H, et al.Mechanical properties and damping capacity of magnesium matrix composites[J]. Composites, 2006, 37A: 2011
[19] Huang W Z, Luo H J, Mu Y L, et al.Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles[J]. Int. J. Min. Metall. Mater., 2017, 24: 701
[20] Gu J H, Zhang X N, Qiu Y F, et al.Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates[J]. Compos. Sci. Technol., 2005, 65: 1736
[21] Wang H Y, Jiang Q C, Zhao Y Q, et al.Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2004, A372: 109
[22] Shen P, Zou B L, Jin S B, et al. Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system [J]. Mater. Sci. Eng., 2007, A454-455: 300
[23] Prasad D S, Shoba C.Experimental evaluation onto the damping behavior of Al/SiC/RHA hybrid composites[J]. J. Mater. Res. Technol., 2016, 5: 123
[24] Cao W, Zhang C F, Fan T X, et al.In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites[J]. Mater. Sci. Eng., 2008, A496: 242
[25] Liu Y C, Li J F, Yang G C, et al.High damping functional materials prepared by spray deposition[J]. J. Mater. Process Technol., 2000, 106: 94
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[4] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[5] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[6] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[9] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[10] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[11] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[12] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[13] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.