|
|
SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究 |
王晨1,2, 王贝贝2,3, 薛鹏2( ), 王东2, 倪丁瑞2, 陈礼清1, 肖伯律2, 马宗义2 |
1 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819 2 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016 3 东北大学材料科学与工程学院 沈阳 110819 |
|
Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite |
Chen WANG1,2, Beibei WANG2,3, Peng XUE2( ), Dong WANG2, Dingrui NI2, Liqing CHEN1, Bolü XIAO2, Zongyi MA2 |
1 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Chinal 3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
Chen WANG,
Beibei WANG,
Peng XUE,
Dong WANG,
Dingrui NI,
Liqing CHEN,
Bolü XIAO,
Zongyi MA.
Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. Acta Metall Sin, 2019, 55(1): 149-159.
[1] | Uluk?y A.Pulsed metall inert gas (MIG) welding and its effects on the microstructure and element distribution of an aluminum matrix reinforced with SiC composite material[J]. Materialwiss. Werkstofftech., 2017, 48: 163 | [2] | Dai J, Liu Z, Yang L, et al.Research on pulsed laser welding of TiB2-enhanced aluminum matrix composites[J]. Int. J. Adv. Manuf. Tech., 2016, 85: 157 | [3] | Xue P, Ni D R, Wang D, et al.Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints[J]. Mater. Sci. Eng., 2011, A528: 4683 | [4] | Wang G Q, Zhao Y H, Hao Y F.Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. J. Mater. Sci. Technol., 2018, 34: 73 | [5] | Shang Q, Ni D R, Xue P, et al.Improving joint performance of friction stir welded wrought Mg alloy by controlling non-uniform deformation behavior[J]. Mater. Sci. Eng., 2017, A707: 426 | [6] | Xue P, Xiao B L, Zhang Q, et al.Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scr. Mater., 2011, 64: 1051 | [7] | Jiang X Q, Wynne B P, Martin J.Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy[J]. J. Mater. Sci. Technol., 2018, 34: 198 | [8] | Reynolds A P, Tang W, Gnaupel-Herold T, et al.Structure, properties, and residual stress of 304L stainless steel friction stir welds[J]. Scr. Mater., 2003, 48: 1289 | [9] | Wu L H, Nagatsuka K, Nakata K.Achieving superior mechanical properties in friction lap joints of copper to carbon-fiber-reinforced plastic by tool offsetting[J]. J. Mater. Sci. Technol., 2018, 34: 1628 | [10] | Feng A H, Xiao B L, Ma Z Y.Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Compos. Sci. Technol., 2008, 68: 2141 | [11] | Wang D, Wang Q Z, Xiao B L, et al.Effect of heat treatment before welding on microstructure and mechanical properties of friction stir welded SiCp/Al-Cu-Mg composite joints[J]. Acta Metall. Sin., 2014, 50: 489(王东, 王全兆, 肖伯律等. 焊前热处理状态对SiCp/Al-Cu-Mg复合材料搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2014, 50: 489) | [12] | Sato Y S, Kokawa H, Enomoto M, et al.Microstructural evolution of 6063 aluminum during friction-stir welding[J]. Metall. Mater. Trans., 1999, 30A: 2429 | [13] | Wang B B, Chen F F, Liu F, et al.Enhanced Mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling[J]. J. Mater. Sci. Technol., 2017, 33: 1009 | [14] | Dong P, Li H M, Sun D Q, et al.Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy[J]. Mater. Des., 2013, 45: 524 | [15] | Li Y Z, Wang Q Z, Xiao B L, et al.Effect of welding parameters and B4C contents on the microstructure and mechanical properties of friction stir welded B4C/6061Al joints[J]. J. Mater. Process. Technol., 2018, 251: 305 | [16] | Ceschini L, Boromei I, Minak G, et al.Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite[J]. Compos. Sci. Technol., 2007, 67: 605 | [17] | Wang D, Wang Q Z, Xiao B L, et al.Achieving friction stir welded SiCp/Al-Cu-Mg composite joint of nearly equal strength to base material at high welding speed[J]. Mater. Sci. Eng., 2014, A589: 271 | [18] | Pirondi A, Collini L.Analysis of crack propagation resistance of Al-Al2O3 particulate-reinforced composite friction stir welded butt joints[J]. Int. J. Fatigue, 2009, 31: 111 | [19] | Ni D R, Chen D L, Xiao B L, et al.Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites[J]. Int. J. Fatigue, 2013, 55: 64 | [20] | Minak G, Ceschini L, Boromei I, et al.Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites[J]. Int. J. Fatigue, 2010, 32: 218 | [21] | James M N, Bradley G R, Lombard H, et al.The relationship between process mechanisms and crack paths in friction stir welded 5083-H321 and 5383-H321 aluminium alloys[J]. Fatigue Fract. Eng. Mater. Struct., 2005, 28: 245 | [22] | Chen X G, da Silva M, Gougeon P, et al. Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites[J]. Mater. Sci. Eng., 2009, A518: 174 | [23] | Liu F J, Fu L, Chen H Y.Microstructures and mechanical properties of thin plate aluminium alloy joint prepared by high rotational speed friction stir welding[J]. Acta Metall. Sin., 2017, 53: 1651(刘奋军, 傅莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能[J]. 金属学报, 2017, 53: 1651) | [24] | Liu F C, Ma Z Y.Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans., 2008, 39A: 2378 | [25] | Frigaard ?, Grong ?, Midling O T.A process model for friction stir welding of age hardening aluminum alloys[J]. Metall. Mater. Trans., 2001, 32A: 1189 | [26] | Schmidt H, Hattel J.A local model for the thermomechanical conditions in friction stir welding[J]. Model. Simul. Mater. Sci. Eng., 2005, 13: 77 | [27] | Kim J H, Barlat F, Kim C, et al.Themo-mechanical and microstructural modeling of friction stir welding of 6111-T4 aluminum alloys[J]. Metall. Mater. Int., 2009, 15: 125 | [28] | Zeng X H, Xue P, Wang D, et al.Realising equal strength welding to parent metal in precipitation-hardened Al-Mg-Si alloy via low heat input friction stir welding[J]. Sci. Technol. Weld. Joining, 2018, 23: 478 | [29] | Suresh S.Fatigue of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 259 | [30] | Zhang Z, Xiao B L, Wang D, et al.Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy[J]. Metall. Mater. Trans., 2011, 42A: 1717 | [31] | Proudhon H, Fouvry S, Buffiere J Y.A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume[J]. Int. J. Fatigue, 2005, 27: 569 | [32] | Murakami Y, Endo M.Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. Int. J. Fatigue, 1994, 16: 163 | [33] | Itoga H, Tokaji K, Nakajima M, et al.Effect of surface roughness on step-wise S-N characteristics in high strength steel[J]. Int. J. Fatigue, 2003, 25: 379 | [34] | Arbegast W J.A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scr. Mater., 2008, 58: 372 | [35] | Arbegast W J.Modeling friction stir joining as a metalworking process [A]. Hot Deformation of Aluminum Alloys III[C]. San Diego: Wiey-TMS, 2003: 313 | [36] | Dickerson T L, Przydatek J.Fatigue of friction stir welds in aluminium alloys that contain root flaws[J]. Int. J. Fatigue, 2003, 25: 1399 | [37] | Zhou L, Wang T, Zhou W L, et al.Microstructural characteristics and mechanical properties of 7050-T7451 aluminum alloy friction stir-welded joints[J]. J. Mater. Eng. Perform., 2016, 25: 2542 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|