Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 981-990    DOI: 10.11900/0412.1961.2017.00483
  本期目录 | 过刊浏览 |
高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响
李彦默1, 刘晨曦1, 余黎明1, 李会军1, 王祖敏1, 刘永长1(), 李文亚2
1 天津大学材料科学与工程学院 水利安全与仿真国家重点实验室 天津 300354
2 西北工业大学材料科学与工程学院 摩擦焊接陕西省重点实验室 西安 710072
Effect of High-Temperature Ageing on Microstructure and Mechanical Properties of Linear Friction Welded S31042 Steel Joint
Yanmo LI1, Chenxi LIU1, Liming YU1, Huijun LI1, Zumin WANG1, Yongchang LIU1(), Wenya LI2
1 State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China;
2 Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
全文: PDF(19737 KB)   HTML
摘要: 

以使用线性摩擦焊工艺连接的S31042钢接头为研究对象,在700 ℃下对其进行长期时效和力学性能测试。通过OM、SEM、TEM和拉伸实验研究高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响。结果表明,在700 ℃长期时效过程中,线性摩擦焊中形成的再结晶晶粒和纳米级NbCrN相的稳定性较好,细晶强化和析出强化的综合作用使接头保持优异的高温性能。而焊缝区、热力影响区及热影响区中不同类型的M23C6相在时效过程中均发生粗化。在时效500 h样品的热力影响区中初次观察到σ相,随着时效时间的延长,σ相的析出数量增加且尺寸增大,导致摩擦焊接头的高温力学性能急剧降低。

关键词 S31042钢线性摩擦焊时效σ相;高温性能    
Abstract

S31042 steels with 25%Cr (mass fraction) and 20%Ni have been served as super-heaters and re-heaters in ultra-super critical (USC) plants, owing to their outstanding corrosion resistance and creep rupture strength. And the reliability of joints at high temperature has attracted much attention since the S31042 steels have been joined successfully by linear friction welding. In this work, the microstructures and mechanical properties of linear friction welded S31042 steel joint subjected to ageing treatment were investigated by using OM, SEM, TEM and mechanical test at 700 ℃. The recrystallized grains and nanoscale NbCrN particles have been stable during the high-temperature ageing, and the joint exhibited excellent performance due to the grain refinement strengthening and precipitation strengthening. The average size of M23C6 phase in weld zone, thermo-mechanically affected zone and heat affected zone increased with the ageing time. After ageing treatment at 700 ℃ for 500 h, σ phase precipitated at boundary junctions in thermo-mechanically affected zone. The average size of σ phase increased with the ageing time, as well as the volume fraction of the σ-phase. With the formation of σ phase, the fracture site of joints shifted from the parent material to the areas adjacent to the weld zone, and the high-temperature mechanical properties of joints were sharply decreased.

Key wordsS31042 steel    linear friction welding    ageing    σ phase;    high-temperature performance
收稿日期: 2017-11-16     
ZTFLH:  TG132.33  
基金资助:国家自然科学基金项目Nos.51325401、51474156和U1660201及国家高技术研究发展计划项目No.2015AA042504
作者简介:

作者简介 李彦默,男,1989年生,博士生

引用本文:

李彦默, 刘晨曦, 余黎明, 李会军, 王祖敏, 刘永长, 李文亚. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响[J]. 金属学报, 2018, 54(7): 981-990.
Yanmo LI, Chenxi LIU, Liming YU, Huijun LI, Zumin WANG, Yongchang LIU, Wenya LI. Effect of High-Temperature Ageing on Microstructure and Mechanical Properties of Linear Friction Welded S31042 Steel Joint. Acta Metall Sin, 2018, 54(7): 981-990.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00483      或      https://www.ams.org.cn/CN/Y2018/V54/I7/981

图1  不同时效时间时S31042钢线性摩擦焊接头显微组织的OM像
图2  不同时效时间接头焊缝区显微组织的SEM像及EDS
图3  焊缝区中M23C6相的颗粒尺寸与时效时间的关系
图4  时效前后接头焊缝区中析出相的TEM/HRTEM像
图5  不同时效时间接头热力影响区显微组织的SEM像
图6  热力影响区中奥氏体的晶粒尺寸与时效时间的关系
图7  不同时效时间接头热力影响区中析出相的TEM像及SAED谱
图8  不同时效时间接头热影响区显微组织的SEM像
图9  热影响区中链状M23C6相的宽度与时效时间的关系
图10  不同时效时间接头在700 ℃的工程应力-应变曲线及伸长率
图11  不同时效时间接头断后高温拉伸样品的宏观形貌
图12  不同时效时间接头高温拉伸样品的断口形貌
图13  不同时效时间接头高温拉伸样品纵截面的SEM像及EDS
[1] Zhou Y H, Liu Y C, Zhou X S, et al.Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review[J]. J. Mater. Sci. Technol., 2017, 33: 1448
[2] Yang Y H, Zhu L H, Wang Q J, et al.Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep[J]. Mater. Sci. Eng., 2014, A608: 164
[3] Zhou Y H, Liu Y C, Zhou X S, et al.Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel[J]. J. Mater. Res., 2015, 30: 2090
[4] Fang Y Y.Precipitation in advanced heat-resistant austenitic steel HR3C [D]. Dalian: Dalian University of Technology, 2010(方圆圆. 新型奥氏体耐热钢HR3C的析出相分析 [D]. 大连: 大连理工大学, 2010)
[5] Zhou Y H, Liu C X, Liu Y C, et al.Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging[J]. Int. J. Miner. Metall. Mater., 2016, 23: 283
[6] Peng Z F, Ren W, Yang C, et al.Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service[J]. Acta Metall. Sin., 2015, 51: 1325(彭志方, 任文, 杨超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系[J]. 金属学报, 2015, 51: 1325)
[7] Wang B, Liu Z C, Cheng S C, et al.Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature[J]. J. Iron Steel Res. Int., 2014, 21: 765
[8] Zheng L G, Hu X Q, Kang X H, et al.Precipitation of M23C6 and its effect on tensile properties of 0.3C-20Cr-11Mn-1Mo-0.35N steel[J]. Mater. Des., 2015, 78: 42
[9] Zhang Z, Hu Z F, Tu H Y, et al.Microstructure evolution in HR3C austenitic steel during long-term creep at 650 ℃[J]. Mater. Sci. Eng., 2017, A681: 74
[10] Wang Y, Cai X Q, Yang Z W, et al.Effects of Nb content in Ti-Ni-Nb brazing alloys on the microstructure and mechanical properties of Ti-22Al-25Nb alloy brazed joints[J]. J. Mater. Sci. Technol., 2017, 33: 682
[11] Wang Z N, Tian L, Xing W W, et al.σ-phase precipitation mechanism of 15Cr-15Ni titanium-modified austenitic stainless steel during long-term thermal exposure[J]. Acta Metall. Sin.(Engl. Lett.), 2018, 31: 281
[12] Schwind M, K?llqvist J, Nilsson J O, et al.σ-phase precipitation in stabilized austenitic stainless steels[J]. Acta Mater., 2000, 48: 2473
[13] Zhang Y, Jing H Y, Xu L Y, et al.High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy[J]. Mater. Sci. Eng., 2017, A686: 102
[14] Liu W, Fan H L, Guo X Z, et al.Mechanical properties of resistance spot welded components of high strength austenitic stainless steel[J]. J. Mater. Sci. Technol., 2016, 32: 561
[15] Fu Y, Li W Y, Yang X W.Microstructure analysis of linear friction welded AISI 321 stainless steel joint[J]. J. Eng. Sci. Technol. Rev., 2015, 8: 37
[16] Bhamji I, Preuss M, Threadgill P L, et al.Linear friction welding of AISI 316L stainless steel[J]. Mater. Sci. Eng., 2010, A528: 680
[17] Li W Y, Vairis A, Preuss M, et al.Linear and rotary friction welding review[J]. Int. Mater. Rev., 2016, 61: 71
[18] Turner R, Gebelin J C, Ward R M, et al.Linear friction welding of Ti-6Al-4V: Modelling and validation[J]. Acta Mater., 2011, 59: 3792
[19] Li W Y, Ma T J, Li J L.Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters[J]. Mater. Des., 2010, 31: 1497
[20] Ma T J, Li W Y, Xu Q Z, et al.Microstructure evolution and mechanical properties of linear friction welded 45 steel joint[J]. Adv. Eng. Mater., 2007, 9: 703
[21] Buffa G, Cammalleri M, Campanella D, et al.Shear coefficient determination in linear friction welding of aluminum alloys[J]. Mater. Des., 2015, 82: 238
[22] Avettand-Fèno?l M N, Racineux G, Debeugny L, et al. Microstructural characterization and mechanical performance of an AA2024 aluminium alloy—Pure copper joint obtained by linear friction welding[J]. Mater. Des., 2016, 98: 305
[23] Ma T J, Chen X, Li W Y, et al.Microstructure and mechanical property of linear friction welded nickel-based superalloy joint[J]. Mater. Des., 2016, 89: 85
[24] Chen X, Xie F Q, Ma T J, et al.Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy[J]. J. Alloys Compd., 2015, 646: 490
[25] Chen X, Xie F Q, Ma T J, et al.Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy[J]. Mater. Des., 2016, 94: 45
[26] Li Y M, Liu Y C, Liu C X, et al.Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel[J]. J. Mater. Sci. Technol., 2018, 34: 653
[27] Chen X M, Lin Y C, Chen M S, et al.Microstructural evolution of a nickel-based superalloy during hot deformation[J]. Mater. Des., 2015, 77: 41
[28] Doherty R D, Hughes D A, Humphreys F J, et al.Current issues in recrystallization: A review[J]. Mater. Sci. Eng., 1997, A238: 219
[29] Zhou X S, Liu C X, Yu L M, et al.Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review[J]. J. Mater. Sci. Technol., 2015, 31: 235
[30] Bullard J W.Numerical simulations of transient-stage Ostwald ripening and coalescence in two dimensions[J]. Mater. Sci. Eng., 1997, A238: 128
[31] Miao K, He Y L, Zhu N Q, et al.Coarsening of carbides during different heat treatment conditions[J]. J. Alloys Compd., 2015, 622: 513
[32] Zhang Y H, Feng Q.Effects of W on creep behaviors of novel Nb-bearing austenitic heat-resistant cast steels at 1000 ℃[J]. Acta Metall. Sin., 2017, 53: 1025(张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53: 1025)
[33] Fang Y Y, Zhao J, Li X N.Precipitates in HR3Csteel aged at high temperature[J]. Acta Metall. Sin., 2010, 46: 844(方圆圆, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46: 844)
[34] Yan J B, Gu Y F, Sun F, et al.Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term service[J]. Mater. Sci. Eng., 2016, A675: 289
[35] Barcik J.The kinetics of σ-phase precipitation in AISI310 and AISI316 steels[J]. Metall. Trans., 1983, 14A: 635
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[3] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[4] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[5] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[6] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[7] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[8] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[9] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[10] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[11] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[12] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[13] 向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
[14] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[15] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.