Please wait a minute...
金属学报  2021, Vol. 57 Issue (7): 928-936    DOI: 10.11900/0412.1961.2020.00330
  研究论文 本期目录 | 过刊浏览 |
Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响
朱士泽1,2, 王东1(), 王全兆1, 肖伯律1(), 马宗义1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites
ZHU Shize1,2, WANG Dong1(), WANG Quanzhao1, XIAO Bolv1(), MA Zongyi1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
Shize ZHU, Dong WANG, Quanzhao WANG, Bolv XIAO, Zongyi MA. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. Acta Metall Sin, 2021, 57(7): 928-936.

全文: PDF(19201 KB)   HTML
摘要: 

通过硬度测试、DSC分析及TEM观测研究了Cu含量对17%SiC (体积分数)颗粒增强Al-1.2Mg-0.6Si-xCu (x = 0、0.2、0.6、1.0、1.2,质量分数,%)复合材料自然时效负面效应的影响规律,并与未增强合金进行了比较。结果表明,与不含Cu的情况相比,添加Cu可以减小复合材料及铝合金在直接人工时效态和先自然时效后人工时效态的硬度差值(ΔH)。其原因在于Cu可以促进人工时效时β"相析出,并形成稳定性良好的L相(一种含Cu纳米相,不易粗化)。然而,Cu会加剧自然时效团簇形成,这些团簇难以在人工时效时转变成析出相,不利于人工时效硬化。因此,Cu对于抑制自然时效的负面效应既存在有利影响,也存在不利影响,表现为ΔH随Cu含量增加产生波动变化。此外,随Cu含量增加,Cu抑制自然时效负面效应的作用在复合材料和合金中表现出不同的规律。与不含Cu的样品相比,复合材料中添加0.2%Cu即可显著降低ΔH,但在铝合金中Cu需增加至0.6%才出现明显效果。这种差异主要源自2方面原因:其一,在铝合金中添加0.2%Cu即会明显促进自然时效团簇的形成;而复合材料中界面及位错湮灭了空位,故0.2%Cu对自然时效团簇析出行为的影响不大;其二,复合材料中添加0.2%Cu便可形成L相,但合金中却不会。

关键词 金属基复合材料Al-Mg-Si-(Cu)合金自然时效人工时效负面效应    
Abstract

Most Al-Mg-Si-Cu alloys and their composites are affected by natural aging processes. When natural aging precedes artificial aging, it impairs the hardening during artificial aging. This study investigates the influence of Cu content on the negative effects of natural aging in silicon carbide (SiC) (17% volume fraction) reinforced Al-1.2Mg-0.6Si-xCu (x = 0, 0.2, 0.6, 1.0, and 1.2, mass fraction, %) composites. The samples were investigated by hardness analysis, DSC, and TEM. For comparison, Al-1.2Mg-0.6Si-xCu alloys were examined by the same methods. The difference in hardness (ΔH) between samples in the direct artificial aging state and those that were naturally aged for 14 d before artificial aging were compared with Cu-containing and Cu-free samples. The values of ΔH were lower in the Cu-containing samples, indicating that Cu mitigated the negative effects of natural aging. However, the values of ΔH fluctuated as the Cu content increased. DSC and TEM results revealed the addition of Cu promoted the precipitation of β" phases (the primary strengthening phases in Al-Mg-Si alloys) and the formation of stable L phases during artificial aging. This morphological behavior explained why Cu inhibited the negative effects of natural aging. On the downside, Cu aggravated the formation of clusters during natural aging, which resisted precipitation and negatively affected the hardening during artificial aging. The contrasting beneficial and adverse influence on the effects of natural aging caused the fluctuations in ΔH. The mitigating effect of Cu differed between the 17%SiC/Al-1.2Mg-0.6Si-xCu composites and Al-1.2Mg-0.6Si-xCu alloys. A small amount of Cu (0.2%, mass fraction) significantly reduced the ΔHof the composite, but the Al alloy with 0.2%Cu failed to elicit this effect. This result can be explained by two observations. First, the DSC results showed that in the Al-1.2Mg-0.6Si-0.2Cu alloys, Cu significantly aggravated the clustering of solute atoms during natural aging, whereas in the 17%SiC/Al-1.2Mg-0.6Si-0.2Cu composites, formation of clusters was low because the vacancies were annihilated by interfaces and dislocations. Second, the TEM results revealed the presence of L phases in the 17%SiC/Al-1.2Mg-0.6Si-0.2Cu composites, which were absent in the Al-1.2Mg-0.6Si-0.2Cu alloys.

Key wordsmetal matrix composites    Al-Mg-Si-(Cu) alloy    natural aging    artificial aging    negative effect
收稿日期: 2020-08-27     
ZTFLH:  TG 146.2  
基金资助:国家自然科学基金项目(51671191、51931009)
作者简介: 朱士泽,男,1993年生,博士生
图1  17%SiC (体积分数)/Al-1.2Mg-0.6Si-1.0Cu (质量分数,%)复合材料AA(淬火后立刻在170℃下人工时效6 h)状态下微观组织的OM及SEM像
图2  17%SiC/Al-1.2Mg-0.6Si-xCu (x = 0、0.2、0.6、1.0)复合材料及Al-1.2Mg-0.6Si-xCu (x = 0、0.2、0.6、1.0)合金的DSC曲线及峰B积分面积
图3  17%SiC/Al-1.2Mg-0.6Si-xCu (x = 0、0.2、1.0)复合材料AA状态和NA/AA (淬火后先自然时效14 d,然后170℃下人工时效6 h)状态下析出相的TEM明场像及相应的析出相长度统计结果(a, b) x = 0 (c, d) x = 0.2 (e, f) x = 1.0
图4  析出相的典型HRTEM像及相应的快速Fourier变换(a) β" phase (b) β' phase (c) L phase
图5  Al-1.2Mg-0.6Si-xCu (x = 0、0.2、1.0)铝合金AA状态和NA/AA状态下析出相的TEM明场像及相应的析出相长度统计结果(a, b) x = 0 (c, d) x = 0.2 (e, f) x = 1.0
图6  Cu含量对AA、NA/AA状态下17%SiC/Al-1.2Mg-0.6Si-xCu (x = 0、0.2、0.6、1.0、1.2)复合材料和Al-1.2Mg-0.6Si-xCu (x = 0、0.2、0.6、1.0、1.2)合金硬度的影响
图7  17%SiC/Al-1.2Mg-0.6Si-0.2Cu复合材料在AA状态下Al基体与SiC颗粒界面的HAADF像及相应的EDS元素分布图
1 Zhou L, Zhang P F, Wang Q Z, et al. Multi-scale study on the fracture behavior of hot compression B4C/6061Al composite [J]. Acta Metall. Sin., 2019, 55: 911
1 周 丽, 张鹏飞, 王全兆等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究 [J]. 金属学报, 2019, 55: 911
2 Zhu S Z, Ma G N, Wang D, et al. Suppressed negative influence of natural aging in SiCp/6092Al composites [J]. Mater. Sci. Eng., 2019, A767: 138422
3 Li Y Z, Wang Q Z, Wang W G, et al. Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites [J]. Mater. Sci. Eng., 2015, A620: 445
4 Pogatscher S, Antrekowitsch H, Leitner H, et al. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys [J]. Acta Mater., 2011, 59: 3352
5 Chang C S T, Wieler I, Wanderka N, et al. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at% Mg-0.38at% Si alloy [J]. Ultramicroscopy, 2009, 109: 585
6 Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2008, 39A: 243
7 Tao G H, Liu C H, Chen J H, et al. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys [J]. Mater. Sci. Eng., 2015, A642: 241
8 Zandbergen H W, Andersen S J, Jansen J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies [J]. Science, 1997, 277: 1221
9 Murayama M, Hono K, Miao W F, et al. The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si [J]. Metall. Mater. Trans., 2001, 32A: 239
10 Torsæter M, Lefebvre W, Marioara C D, et al. Study of intergrown L and Q′ precipitates in Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2011, 64: 817
11 Ding L P, Jia Z H, Zhang Z Q, et al. The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions [J]. Mater. Sci. Eng., 2015, A627: 119
12 Zandbergen M W, Cerezo A, Smith G D W. Study of precipitation in Al-Mg-Si Alloys by atom probe tomography II. Influence of Cu additions [J]. Acta Mater., 2015, 101: 149
13 Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall. Sin., 2019, 55: 1319
13 马国楠, 王 东, 刘振宇等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55: 1319
14 Ma G N, Wang D, Liu Z Y, et al. An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu composites [J]. Mater. Charact., 2019, 158: 109966
15 Jin P, Xiao B L, Wang Q Z, et al. Effect of solution temperature on aging behavior and properties of SiCp/Al-Cu-Mg composites [J]. Mater. Sci. Eng., 2011, A528: 1504
16 Edwards G A, Stiller K, Dunlop G L, et al. The precipitation sequence in Al-Mg-Si alloys [J]. Acta Mater., 1998, 46: 3893
17 Bryant J D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet [J]. Metall. Mater. Trans., 1999, 30A: 1999
18 Chang C S T, Banhart J. Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy [J]. Metall. Mater. Trans., 2011, 42A: 1960
19 Dumitraschkewitz P, Uggowitzer P J, Gerstl S S A, et al. Size-dependent diffusion controls natural aging in aluminium alloys [J]. Nat. Commun., 2019, 10: 4746
20 Birol Y. Restoration of the bake hardening response in a naturally aged twin-roll cast AlMgSi automotive sheet [J]. Scr. Mater., 2006, 54: 2003
21 Weng Y Y, Jia Z H, Ding L P, et al. Clustering behavior during natural aging and artificial aging in Al-Mg-Si alloys with different Ag and Cu addition [J]. Mater. Sci. Eng., 2018, A732: 273
22 Pogatscher S, Antrekowitsch H, Leitner H, et al. Influence of the thermal route on the peak-aged microstructures in an Al-Mg-Si aluminum alloy [J]. Scr. Mater., 2013, 68: 158
23 Weng Y Y, Jia Z H, Ding L P, et al. Special segregation of Cu on the habit plane of lath-like β′ and QP2 precipitates in Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2018, 151: 33
24 Jia Z H, Ding L P, Cao L F, et al. The influence of composition on the clustering and precipitation behavior of Al-Mg-Si-Cu alloys [J]. Metall. Mater. Trans., 2017, 48A: 459
25 Saito T, Ehlers F J H, Lefebvre W, et al. Cu atoms suppress misfit dislocations at the β″/Al interface in Al-Mg-Si alloys [J]. Scr. Mater., 2016, 110: 6
26 Chrominski W, Lewandowska M. Precipitation phenomena in ultrafine grained Al-Mg-Si alloy with heterogeneous microstructure [J]. Acta Mater., 2016, 103: 547
27 Zurob H S, Seyedrezai H. A model for the growth of solute clusters based on vacancy trapping [J]. Scr. Mater., 2009, 61: 141
28 Yang W S, Chen G Q, Qiao J, et al. Effect of Mg addition on the microstructure and mechanical properties of SiC nanowires reinforced 6061Al matrix composite [J]. Mater. Sci. Eng., 2017, A689: 189
29 Zhang Q, Ma X Y, Wu G H. Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique [J]. Ceram. Int., 2013, 39: 4893
30 Salvo L, L'Espérance G, Suéry M, et al. Interfacial reactions and age hardening in Al-Mg-Si metal matrix composites reinforced with SiC particles [J]. Mater. Sci. Eng., 1994, A177: 173
31 Shi Z L, Yang J M, Lee J C, et al. The interfacial characterization of oxidized SiC(p)/2014 Al composites [J]. Mater. Sci. Eng., 2001, A303: 46
[1] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[2] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[3] 范根莲, 郭峙岐, 谭占秋, 李志强. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
[4] 刘东雷, 陈情, 王德, 张睿, 王文琴. Ti-6Al-4V表面电子束熔覆(Ti, W)C1-x复合涂层的形成及摩擦性能[J]. 金属学报, 2020, 56(7): 1025-1035.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[7] 张学习, 郑忠, 高莹, 耿林. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报, 2019, 55(1): 109-125.
[8] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[9] 武高辉, 乔菁, 姜龙涛. Al及其复合材料尺寸稳定性原理与稳定化设计研究进展[J]. 金属学报, 2019, 55(1): 33-44.
[10] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[11] 王艳秋,吴昆,王福会. 第二相对镁基材料微弧氧化过程的影响机制*[J]. 金属学报, 2016, 52(6): 689-697.
[12] 刘奋军, 傅莉, 张纹源, 孟强, 董春林, 栾国红. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能[J]. 金属学报, 2015, 51(3): 281-288.
[13] 张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山. 汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究[J]. 金属学报, 2013, 49(12): 1604-1610.
[14] 许世娇 肖伯律 刘振宇 王文广 马宗义. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888.
[15] 顾冬冬; 沈以赴 . 添加La2O3对激光烧结(WC-Co)p/Cu金属基复合材料组织和成形性能的影响[J]. 金属学报, 2007, 43(9): 968-976 .