Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 991-998    DOI: 10.11900/0412.1961.2017.00325
  本期目录 | 过刊浏览 |
基于溶胶-凝胶法的YAlO3/Ti2AlC复合涂层在干燥与热分解过程中的开裂行为研究
范超, 贾清(), 崔玉友, 杨锐
中国科学院金属研究所 沈阳 110016
Cracking Behavior of Sol-Gel Derived YAlO3/Ti2AlC Composite Coatings During Drying and Pyrolysis
Chao FAN, Qing JIA(), Yuyou CUI, Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

范超, 贾清, 崔玉友, 杨锐. 基于溶胶-凝胶法的YAlO3/Ti2AlC复合涂层在干燥与热分解过程中的开裂行为研究[J]. 金属学报, 2018, 54(7): 991-998.
Chao FAN, Qing JIA, Yuyou CUI, Rui YANG. Cracking Behavior of Sol-Gel Derived YAlO3/Ti2AlC Composite Coatings During Drying and Pyrolysis[J]. Acta Metall Sin, 2018, 54(7): 991-998.

全文: PDF(6060 KB)   HTML
摘要: 

采用高温金相显微镜(HTOM)等原位观察和分析手段研究了溶胶-凝胶法制备YAlO3/Ti2AlC复合陶瓷涂层过程中干燥与热分解阶段的开裂行为。研究发现,涂层中的开裂现象发生于凝胶体系热分解阶段,是凝胶分子链的断裂导致体系所能承受的最大应力不足以抵抗涂层内逐渐积聚的应力,从而发生了涂层的开裂以及后续升温过程中裂纹的扩展现象。涂层的开裂最初往往发生在较厚的位置,因为在这些位置涂层内的应力集中更为严重。较快速升温可以使涂层表面的应力分布被局限在较小范围内,从而实现减小裂纹尺寸达到改善涂层表面质量的目的,升温速率为5 ℃/min时YAlO3/Ti2AlC复合陶瓷涂层的表面质量最佳。

关键词 开裂涂层溶胶-凝胶干燥热分解    
Abstract

Sol-gel derived YAlO3/MAX composite coatings were designed as protective coatings for γ-TiAl base intermetallic compounds which exhibit insufficient oxidation resistance at temperatures above 800 ℃. However, at present, it's still a big challenge to achieve crack-free surfaces while preparing YAlO3/MAX composite coatings via sol-gel processing, especially during drying and low temperature heat treatment. Hence, cracking behavior of YAlO3/Ti2AlC composite coatings, which were derived from nanoparticles-gel system, was studied in this work by means of in situ techniques such as high-temperature optical microscopy (HTOM). According to this work, cracking of YAlO3/Ti2AlC composite coatings during drying and pyrolysis mainly occurred in stage 3, i.e., the pyrolysis stage of slurry, in which the maximum stress that coating system can tolerate decreased gradually as a result of pyrolysis of the gel network and was eventually exceeded by the increasing internal stresses generated owing to heating and volume change of coating system. Coating thickness, which varied in the plane of coatings and was affected by the difference of drying rate during stage 1, was a critical factor that determined the positions where cracks may be initiated. It was observed that cracks were more easily formed on those sites with thicker coatings, where often produced great stress concentration. Both crack width and spacing can be decreased by applying fast heating rate, since large-scale non-homogeneous distribution of internal stress concentration in coatings was reduced in this way and cracking behavior of coatings was consequently confined into very small region. In this work, a heating rate of 5 ℃/min was the best choice to obtain YAlO3/Ti2AlC composite coatings with acceptable surface quality.

Key wordscracking    coating    sol-gel    drying    pyrolysis
收稿日期: 2017-07-31     
ZTFLH:  TL214.6  
作者简介:

作者简介 范 超,男,1985年生,硕士

图1  升温速率为5 ℃/min时浆料的热重(TG)、差热分析(DTA)及失重速率变化曲线
图2  Y凝胶在升温过程中的原位XRD谱
图3  升温速率为5 ℃/min时涂层样品在不同温度下的表面形貌原位OM像
图4  升温速率为5 ℃/min时涂层样品在不同温度下的表面形貌原位OM像
图5  不同升温速率下涂层样品在400 ℃时表面形貌的原位OM像
[1] Tian X, Jia Q, Cui Y Y, et al.Preparation and high-temperature anti-oxidation property of protection coatings on γ-TiAl alloys by composite sol-gel method[J]. Chin. J. Nonferrous Met., 2010, 20(S1): 264(田晓, 贾清, 崔玉友等. 复合溶胶-凝胶法制备TiAl合金表面防护涂层及其高温抗氧化性能[J]. 中国有色金属学报, 2010, 20(S1): 264)
[2] Froes F H, Suryanarayana C, Eliezer D.Synthesis, properties and applications of titanium aluminides[J]. J. Mater. Sci., 1992, 27: 5113
[3] Yamaguchi M, Inui H, Ito K.High-temperature structural intermetallics[J]. Acta Mater., 2000, 48: 307
[4] Appel F, Brossmann U, Christoph U, et al.Recent progress in the development of gamma titanium aluminide alloys[J]. Adv. Eng. Mater., 2000, 2: 699
[5] Loria E A.Gamma titanium aluminides as prospective structural materials[J]. Intermetallics, 2000, 8: 1339
[6] Bewlay B P, Weimer M, Kelley T, et al.The science, technology, and implementation of TiAl alloys in commercial aircraft engines [A]. MRS Symposium Proceedings [C]. Pittsburgh: Materials Research Society Press, 2013: 49
[7] Klein T, Clemens H, Mayer S.Advancement of compositional and microstructural design of intermetallic γ-TiAl based alloys determined by atom probe tomography[J]. Materials, 2016, 9: 755
[8] Umakoshi Y, Yamaguchi M, Sakagami T, et al.Oxidation resistance of intermetallic compounds Al3Ti and TiAl[J]. J. Mater. Sci., 1989, 24: 1599
[9] Brady M P, Brindley W J, Smialek J L, et al.The oxidation and protection of gamma titanium aluminides[J]. JOM, 1996, 48(11): 46
[10] Rakowski J M, Pettit F S, Meier G H, et al.The effect of nitrogen on the oxidation of γ-TiAl[J]. Scr. Metall. Mater., 1995, 33: 997
[11] Barsoum M W, Brodkin D, El-Raghy T.Layered machinable ceramics for high temperature applications[J]. Scr. Mater., 1997, 36: 535
[12] Wang X H, Zhou Y C.Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic[J]. J. Mater. Chem., 2002, 12: 455
[13] Manoun B, Zhang F X, Saxena S K, et al.X-ray high-pressure study of Ti2AlN and Ti2AlC[J]. J. Phys. Chem. Solids, 2006, 67: 2091
[14] Huang J F.The Mechanism and Technique of Sol-Gel Process [M]. Beijing: Chemistry Industry Press, 2005: 12(黄剑锋. 溶胶-凝胶原理与技术 [M]. 北京: 化学工业出版社, 2005: 12)
[15] Hench L L, West J K.The sol-gel process[J]. Chem. Rev., 1990, 90: 33
[16] Brinker C J, Frye G C, Hurd A J, et al.Fundamentals of sol-gel dip coating[J]. Thin Solid Films, 1991, 201: 97
[17] Brinker C J, Scherer G W.Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing [M]. New York: Academic Press, 1990: 788
[18] Barrow D A, Petroff T E, Sayer M. Thick ceramic coatings using a sol gel based ceramic-ceramic 0-3 composite [J]. Surf. Coat. Technol., 1995, 76-77: 113
[19] Barrow D A, Petroff T E, Tandon R P, et al.Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process[J]. J. Appl. Phys., 1997, 81: 876
[20] Barrow D A, Petroff E T, Sayer M.Method for producing thick ceramic films by a sol gel coating process [P]. US Pat, 5585136, 1996
[21] Garino T J.The cracking of sol-gel films during drying [A]. MRS Symposium Proceedings [C]. Pittsburgh: Materials Research Society Press, 1990: 497
[22] Atkinson A, Guppy R M.Mechanical stability of sol-gel films[J]. J. Mater. Sci., 1991, 26: 3869
[23] Weng W J, Yang J, Ding Z S.The sol-gel process of the yttrium complex from yttrium acetate[J]. J. Non-Cryst. Solids, 1994, 169: 177
[24] Tian X, Jia Q, Cui Y Y, et al.Thermal decomposition and crystallization of precursor sol for preparing oxidation resistant coatings on intermetallic TiAl[J]. Chin. J. Mater, Res., 2010, 24: 483(田晓, 贾清, 崔玉友等. TiAl合金防护涂层先驱溶胶的热分解和晶化过程[J]. 材料研究学报, 2010, 24: 483)
[25] Lan W H, Xiao P.Constrained drying of aqueous yttria-stabilized zirconia slurry on a substrate. I: Drying mechanism[J]. J. Am. Ceram. Soc., 2006, 89: 1518
[26] Francis L F.Sol-gel methods for oxide coatings[J]. Mater. Manuf. Processes, 1997, 12: 963
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[3] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[4] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[5] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[6] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[7] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[8] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[10] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[11] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[12] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[13] 张世宏, 胡凯, 刘侠, 杨阳. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.
[14] 董昕远, 雒晓涛, 李成新, 李长久. B清除大气等离子喷涂CuNi熔滴氧化物效应[J]. 金属学报, 2022, 58(2): 206-214.
[15] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.