Please wait a minute...
金属学报  2018, Vol. 54 Issue (4): 501-511    DOI: 10.11900/0412.1961.2017.00331
  本期目录 | 过刊浏览 |
一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究
文明月1,2, 董文超1, 庞辉勇3, 陆善平1()
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
3 舞阳钢铁有限责任公司 平顶山 462500
Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel
Mingyue WEN1,2, Wenchao DONG1, Huiyong PANG3, Shanping LU1()
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China,Shenyang 110016, China
3 Wuyang Iron and Steel Co. Ltd., Pingdingshan 462500, China
引用本文:

文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. Acta Metall Sin, 2018, 54(4): 501-511.

全文: PDF(13660 KB)   HTML
摘要: 

研究了一种Fe-Cr-Ni-Mo高强钢经不同峰值温度(Tp) (760、830、1020和1320 ℃)焊接热循环后的显微组织与冲击韧性。结果表明,随着Tp的升高,特征热影响区的平均冲击功先增大后减小。粗晶区(CGHAZ,Tp=1320 ℃)和细晶区(FGHAZ,Tp=1020 ℃)的显微组织为淬火马氏体。由于晶粒粗大,造成CGHAZ冲击韧性较差,低于晶粒细小的FGHAZ冲击韧性。部分相变区(ICHAZ,Tp=760 ℃和Tp=830 ℃)的显微组织为淬火马氏体和回火马氏体组成的混合组织,由于冲击试样V型缺口处的混合组织界面所占比例具有随机性,造成ICHAZ冲击功波动较大。ICHAZ (Tp=830 ℃)中均匀的细晶组织对冲击裂纹具有止裂作用,使得该微区具有最佳的冲击性能。尽管ICHAZ (Tp=760 ℃)晶粒细小,但存在的极细晶组织(尺寸为1~2 μm)在遭受冲击载荷时易形成密集分布的次生微孔,基体中未溶的M2C及MC析出相促使微孔连接形成裂纹,导致该微区冲击韧性最差,成为热影响区的薄弱区域。

关键词 Fe-Cr-Ni-Mo高强钢焊接热影响区冲击韧性显微组织    
Abstract

Marine engineering steel is the key material for the construction of major marine infrastructure projects. Due to the harsh environment in the deep sea, the mechanical properties such as strength, low temperature toughness and so on of the marine steel are required to be higher. In this work, the weldability of a Fe-Cr-Ni-Mo high-strength steel was studied, and the microstructure and impact toughness of the steel after welding thermal cycling at different peak temperatures were analyzed. The results show that the average impact toughness of characteristic heat affected zone under different temperatures increases first and then decreases with the increase of peak temperature (Tp). The microstructures of coarse grain heat-affected zone (CGHAZ, Tp=1320 ℃) and fine grain heat-affected zone (FGHAZ, Tp=1020 ℃) are quenched martensite. Because of the coarse grain size, the impact toughness of CGHAZ is poor, which is lower than that of FGHAZ. The microstructure of inter-critical heat-affected zone (ICHAZ, Tp=830 ℃ and Tp=760 ℃) is composed of quenched martensite and tempered martensite. Due to the randomness of the proportion of the interfaces between the mixed microstructures near the V-notch, the impact energy values of ICHAZ fluctuates greatly. The homogeneous fine grain structure in ICHAZ (Tp=830 ℃) has a crack arrest effect during the impact deformation, which makes the characteristic zone have the best impact toughness. Although the grain size in ICHAZ (Tp=760 ℃) is also fine, the existence of the ultra-fine grain zones (the grain size in which is only 1~2 μm) benefits the formation of secondary voids under the impact load. The undissolved M2C and MC precipitations in matrix promote the connecting of secondary voids and then form the secondary cracks. As a result, the impact toughness of the characteristic zone is poor, and becomes the weak region of HAZ.

Key wordsFe-Cr-Ni-Mo high strength steel    welding heat affected zone    impact toughness    microstructure
收稿日期: 2017-08-02     
ZTFLH:  TG401  
基金资助:国家重点研发计划项目No.2016YFB0300601和中国科学院重点部署项目No.GFZD-125-15-003-1
作者简介:

作者简介 文明月,女,1992年生,硕士生

图1  HAZ各微区的特征热循环曲线
图2  HAZ各微区在不同温度下的Charpy-V型缺口冲击功
图3  0 ℃下ICHAZ的示波冲击载荷-位移曲线
Tp / ℃ Sample No. Ei / J Ep / J Et / J
760 1 30 39 69
2 22 27 49
3 15 24 39
830 1 45 67 112
2 42 52 94
3 44 35 79
表1  ICHAZ在0 ℃下示波冲击实验的裂纹起裂功Ei、裂纹扩展功Ep及总冲击功Et
图4  焊接状态下加热速率与奥氏体转变温度A1和A3的关系
图5  HAZ各微区的显微组织与原奥氏体晶界形貌的OM像
图6  HAZ各微区的SEM像
Tp / ℃ Quenched martensite Tempered martensite
830 594 448
760 574 472
表2  ICHAZ中不同显微组织的硬度
图7  ICHAZ (Tp=760℃)的EBSD像
图8  -20 ℃下ICHAZ冲击样品断口纵剖面上的二次裂纹分布
图9  ICHAZ冲击样品中2种二次裂纹所占比例与冲击功的关系
图10  ICHAZ冲击断口形貌
图11  ICHAZ的TEM明场像
图12  HAADF-STEM模式下,ICHAZ (Tp=760℃)的TEM像及M2C相和MC相的SAED谱
图13  ICHAZ中次生微孔生长过程示意图
[1] Wang C J, Liang J X, Liu Z B, et al.Effect of metastable austenite on mechanical property and mechanism in cryogenic steel applied in oceaneering[J]. Acta Metall. Sin., 2016, 52: 385(王长军, 梁剑雄, 刘振宝等. 亚稳奥氏体对低温海工用钢力学性能的影响与机理[J]. 金属学报, 2016, 52: 385)
[2] Di G B, Liu Z Y, Ma Q S, et al.Low temperature toughness and Z-direction performance of self-elevating platform plate[J]. J. Iron. Steel Res., 2010, 22(7): 51(狄国标, 刘振宇, 麻庆申等. 自升式平台用厚板的低温韧性与Z向性能[J]. 钢铁研究学报, 2010, 22(7): 51)
[3] Zhou Y L, Jia T, Zhang X J, et al.Microstructure and toughness of the CGHAZ of an offshore platform steel[J]. J. Mater. Process. Technol., 2015, 219: 314
[4] Li C W, Wang Y, Han T, et al.Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding[J]. J. Mater. Sci., 2011, 46: 727
[5] Spanos G, Fonda R W, Vandermeer R A, et al.Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding[J]. Metall. Mater. Trans., 1995, 26A: 3277
[6] Kumar S, Shahi A S.Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds[J]. Mater. Des., 2016, 89: 399
[7] Hutchinson B, Komenda J, Rohrer G S, et al.Heat affected zone microstructures and their influence on toughness in two microallyed HSLA steels[J]. Acta Mater., 2015, 97: 380
[8] Jang J I, Ju J B, Lee B W, et al.Effects of microstructural change on fracture characteristics in coarse-grained heat-affected zones of QLT-processes 9% Ni steel[J]. Mater. Sci. Eng., 2003, A340: 68
[9] Lee S G, Lee D H, Sohn S S, et al.Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels[J]. Mater. Sci. Eng., 2017, A697: 55
[10] Li Y J, Zou Z D, Chen Z N, et al.Effects of the weld thermal cycle on microstructure and properties of the heat-affected zone of HQ130 steel[J]. Acta Metall. Sin., 1996, 32: 532(李亚江, 邹增大, 陈祝年等. 焊接热循环对HQ130钢热影响区组织及性能的影响[J]. 金属学报, 1996, 32: 532)
[11] Li Y J, Zou Z D, Wu H Q, et al.Microstructure and performance in the inter-critical region of heat-affected zone of HQ130 steel[J]. Trans. China Weld. Inst., 2001, 22(2): 54(李亚江, 邹增大, 吴会强等. HQ130钢热影响区的ICHAZ区组织性能[J]. 焊接学报, 2001, 22(2): 54)
[12] Wen T.Study on high-strength and high-toughness Fe-Cr-Ni-Mo based steel for gas cylinder application [D]. Beijing: University of Chinese Academy of Sciences, 2014(温涛. 气瓶用高强高韧Fe-Cr-Ni-Mo系合金钢的研究 [D]. 北京: 中国科学院大学, 2014)
[13] Mathur K K, Needleman A, Tvergaard V.Three dimensional analysis of dynamic ductile crack growth in a thin plate[J]. J. Mech. Phys. Solids, 1996, 44: 439
[14] Nazari A.Simulation Charpy impact energy of functionally graded steels by modified stress-strain curve through mechanism-based strain gradient plasticity theory[J]. Comput. Mater. Sci., 2012, 51: 225
[15] Curry D A.The relationship between fracture toughness and Charpy impact transition temperatures in mild steel[J]. Mater. Sci. Eng., 1980, A44: 285
[16] Kim H, Park J, Kang M, et al.Interpretation of Charpy impact energy characteristics by microstructural evolution of dynamically compressed specimens in three tempered martensitic steels[J]. Mater. Sci. Eng., 2016, A649: 57
[17] Das A, Viehrig H W, Bergner F, et al.Effect of microstructural anisotropy on fracture toughness of hot rolled 13Cr ODS steel—The role of primary and secondary cracking[J]. J. Nucl. Mater., 2017, 491: 83
[18] Kim D K, Kim E Y, Han J, et al.Effect of microstructural factors on void formation by ferrite/martensite interface decohesion in DP980 steel under uniaxial tension[J]. Int. J. Plast., 2017, 94: 3
[19] Sun X, Choi K S, Liu W N, et al.Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. Int. J. Plast., 2009, 25: 1888
[20] Rice J R, Tracey D M.On the ductile enlargement of voids in triaxial stress fields[J]. J. Mech. Phys. Solids, 1969, 17: 201
[21] Cox T B, Low J R.An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels[J]. Metall. Trans., 1974, 5: 1457
[22] Tvergaard V. Study of localization in a void-sheet under stress states near pure shear [J]. Int. J. Solids Struct., 2015, 75-76: 134
[23] Eizadjou M, Manesh H D, Janghorban K.Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process[J]. J. Alloys Compd., 2009, 474: 406
[24] Valiev R Z, Murashkin M Y, Semenova I P.Grain boundaries and mechanical properties of ultrafine-grained metals[J]. Metall. Mater. Trans., 2010, 41A: 816
[25] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447(温涛, 胡小锋, 宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J]. 金属学报, 2014, 50: 447)
[26] Cao R, Feng W, Peng Y, et al.Investigation of abnormal high impact toughness in simulated welding CGHAZ of a 8%Ni 980 MPa high strength steel[J]. Mater. Sci. Eng., 2010, A528: 631
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.