|
|
国产RPV钢铁离子辐照脆化行为的正电子湮灭研究 |
张天慈1,2, 王海涛1, 李正操2( ), SCHUT Henk3, 张征明1, 贺铭4, 孙玉良1 |
1 清华大学核能与新能源技术研究院高温堆总体室 先进反应堆工程与安全教育部重点实验室 先进核能技术协同创新中心 北京 100084 2 清华大学材料学院先进材料教育部重点实验室 北京 100084 3 Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands 4 上海电气核电设备有限公司 上海 201306 |
|
Positron Annihilation Investigation of Embrittlement Behavior in Chinese RPV Steels after Fe-Ion Irradiation |
Tianci ZHANG1,2, Haitao WANG1, Zhengcao LI2( ), Henk SCHUT3, Zhengming ZHANG1, Ming HE4, Yuliang SUN1 |
1 Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China 2 Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3 Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands 4 Shanghai Electric Nuclear Power Equipment Co., Ltd., Shanghai 201306, China |
引用本文:
张天慈, 王海涛, 李正操, SCHUT Henk, 张征明, 贺铭, 孙玉良. 国产RPV钢铁离子辐照脆化行为的正电子湮灭研究[J]. 金属学报, 2018, 54(4): 512-518.
Tianci ZHANG,
Haitao WANG,
Zhengcao LI,
Henk SCHUT,
Zhengming ZHANG,
Ming HE,
Yuliang SUN.
Positron Annihilation Investigation of Embrittlement Behavior in Chinese RPV Steels after Fe-Ion Irradiation[J]. Acta Metall Sin, 2018, 54(4): 512-518.
[1] | Zhang Z Y, Dong Y J, Li F, et al.The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: An engineering and technological innovation[J]. Engineering, 2016, 2: 112 | [2] | Lee B S, Hong J H, Yang W J, et al.Master curve characterization of the fracture toughness in unirradiated and irradiated RPV steels using full-and 1/3-size pre-cracked Charpy specimens[J]. Int. J. Pressure Vessels Piping, 2000, 77: 599 | [3] | Gurovich B, Kuleshova E, Shtrombakh Y, et al.Evolution of microstructure and mechanical properties of VVER-1000 RPV steels under re-irradiation[J]. J. Nucl. Mater., 2015, 456: 373 | [4] | Xu G, Cai L L, Feng L, et al.Effect of the precipitation of Cu-rich clusters on the DBTT of RPV simulated steel[J]. Acta Metall. Sin., 2012, 48: 753(徐刚, 蔡琳玲, 冯柳 等. 富Cu团簇的析出对RPV模拟钢韧-脆转变温度的影响 [J]. 金属学报, 2012, 48: 753) | [5] | Li Z C, Chen L.Irradiation embrittlement mechanisms and relevant influence factors of nuclear reactor pressure vessel steels[J]. Acta Metall. Sin., 2014, 50: 1285(李正操, 陈良. 核能系统压力容器辐照脆化机制及其影响因素 [J]. 金属学报, 2014, 50: 1285) | [6] | Odette G R, Lucas G E.Recent progress in understanding reactor pressure vessel steel embrittlement[J]. Radiat. Eff. Defects Solids, 1998, 144: 189 | [7] | Chaouadi R, Gérard R.Copper precipitate hardening of irradiated RPV materials and implications on the superposition law and re-irradiation kinetics[J]. J. Nucl. Mater., 2005, 345: 65 | [8] | Yeli G, Li Z C, Yu X Y, et al.Mechanical and magnetic properties of copper dispersed ferrum films under heat treatment[J]. Rare Met., 2014, 33: 641 | [9] | Styman P D, Hyde J M, Wilford K, et al.Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds[J]. Ultramicroscopy, 2015, 159: 292 | [10] | Carter R G, Soneda N, Dohi K, et al.Microstructural characterization of irradiation-induced Cu-enriched clusters in reactor pressure vessel steels[J]. J. Nucl. Mater., 2001, 298: 211 | [11] | Zelenty J E.Understanding thermally induced embrittlement in low copper RPV steels utilising atom probe tomography[J]. Mater. Sci. Technol., 2015, 31: 981 | [12] | Odette G R, Nanstad R K.Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities[J]. JOM, 2009, 61(7): 17 | [13] | Ortner S.Anomalous hardening in RPV surveillance and MTR data [R]. London, UK: NNL, 2010 | [14] | Xu G, Chu D F, Cai L L, et al.Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel[J]. Acta Metall. Sin., 2011, 47: 905(徐刚, 楚大锋, 蔡琳玲 等. RPV模拟钢中纳米富Cu相的析出和结构演化研究 [J]. 金属学报, 2011, 47: 905 | [15] | Watanabe H, Arase S, Yamamoto T, et al.Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons[J]. J. Nucl. Mater., 2016, 471: 243 | [16] | Bergner F, Gillemot F, Hernández-Mayoral M, et al.Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels[J]. J. Nucl. Mater., 2015, 461: 37 | [17] | Slugeň V, Kryukov A.Microstructural study of WWER reactor pressure vessel steels[J]. Nucl. Eng. Des., 2013, 263: 308 | [18] | Ko???k J, Keilova E, ????ek J, et al. TEM and PAS study of neutron irradiated VVER-type RPV steels[J]. J. Nucl. Mater., 2002, 303: 52 | [19] | Nagai Y, Takadate K, Tang Z, et al.Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys[J]. Phys. Rev., 2003, 67B: 224202 | [20] | Meslin E, Lambrecht M, Hernández-Mayoral M, et al.Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses[J]. J. Nucl. Mater., 2010, 406: 73 | [21] | Toyama T, Nagai Y, Tang Z, et al.Nanostructural evolution in surveillance test specimens of a commercial nuclear reactor pressure vessel studied by three-dimensional atom probe and positron annihilation[J]. Acta Mater., 2007, 55: 6852 | [22] | Nikolaeva A V, Nikolaev Y A, Kryukov A M.The contribution of grain boundary effects to low-alloy steel irradiation embrittlement[J]. J. Nucl. Mater., 1995, 218: 85 | [23] | Lü Z, Faulkner R G, Flewitt P E J. Neutron irradiation-induced phosphorus segregation in reactor pressure vessel steels[J]. Acta Metall. Sin., 2005, 41: 79(吕铮, Faulkner R G, Flewitt P E J. 中子辐照诱导压力容器钢中磷的偏析 [J]. 金属学报, 2005, 41: 79) | [24] | Chen L, Li Z C, Schut H, et al.Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys[J]. J. Phys. Conf. Ser., 2016, 674: 012012 | [25] | Jiang J, Wu Y C, Liu X B, et al.Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy[J]. J. Nucl. Mater., 2015, 458: 326 | [26] | Chen D Y, Murakami K, Dohi K, et al.Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition[J]. Nucl. Instrum. Methods Phys. Res., 2015, 365B: 503 | [27] | Schut H, van Gog H, van Veen A, et al. A positron beam study of hydrogen confined in nano-cavities in crystalline silicon[J]. Nucl. Instrum. Methods Phys. Res., 2004, 216B: 251 | [28] | Eleveld H, van Veen A. Void growth and thermal desorption of deuterium from voids in tungsten [J]. J. Nucl. Mater., 1994, 212-215: 1421 | [29] | Vehanen A, Saarinen K, Hautoj?rvi P, et al.Profiling multilayer structures with monoenergetic positrons[J]. Phys. Rev, 1987, 35B: 4606 | [30] | Slugeň V.Defects investigation in neutron irradiated reactor steels by positron annihilation[J]. Nucl. Eng. Des., 2005, 235: 1961 | [31] | Liu X B, Wang R S, Jiang J, et al.Slow positron beam and nanoindentation study of irradiation-related defects in reactor vessel steels[J]. J. Nucl. Mater., 2014, 451: 249 | [32] | Jin S X, Zhang P, Lu E Y, et al.Correlation between Cu precipitates and irradiation defects in Fe-Cu model alloys investigated by positron annihilation spectroscopy[J]. Acta Mater., 2016, 103: 658 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|