Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 1-10    DOI: 10.11900/0412.1961.2017.00236
  本期目录 | 过刊浏览 |
一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能
胡小锋(), 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建
中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness
Xiaofeng HU(), Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. Acta Metall Sin, 2018, 54(1): 1-10.

全文: PDF(1319 KB)   HTML
摘要: 

采用熔化极活性气体保护焊(MAG焊)对一种Fe-Cr-Ni-Mo高强高韧合金钢板进行多道次焊接,利用SEM、EPMA、TEM以及拉伸、冲击等实验研究了焊接接头的组织和力学性能。结果表明,焊缝金属由柱状晶和等轴晶组成,其中上部焊缝以柱状晶为主,而下部焊缝的等轴晶含量增加。焊缝上部因冷速较快形成回火马氏体组织;下部因合金元素含量较高,淬硬倾向较强,形成了粒状贝氏体组织。靠近焊缝的热影响区为较粗大的马氏体组织,其硬度最大(621 HV),明显高于母材(410 HV)。上部焊缝金属的硬度为365 HV,低于母材,而下部焊缝的硬度高于焊缝上部和母材,为450 HV。因此,焊接接头上部拉伸试样在焊缝处发生断裂,断裂强度为1109 MPa,而焊缝的下部拉伸试样在母材处发生断裂,断裂强度为1183 MPa。本实验用Fe-Cr-Ni-Mo合金钢的焊接接头强度较高,焊接强度系数不小于0.93,焊缝金属的冲击功为53 J。

关键词 Fe-Cr-Ni-Mo高强高韧合金钢焊接接头回火马氏体粒状贝氏体力学性能    
Abstract

High-strength steel has the advantages of high strength, low cost and good hot and cold workability, etc., which is widely used in various fields of national economy as engineering steel, such as bridge, vehicle, ship, pressure vessel and so on. As increasing strength, the plasticity and toughness of high strength steel have not meet the demand in some industrial areas, especially the low temperature impact toughness. Recently, a Fe-Cr-Ni-Mo steel with high-strength and high-toughness has been deve-loped and has been successfully used to prepare high pressure vessels. In this work, metal active gas (MAG) welding with multi-pass welding was used to join a Fe-Cr-Ni-Mo high-strength and high-toughness steel. The microstructure and fracture morphologies of welded joint are investigated by SEM, EPMA and TEM and the micro-hardness, tensile strength and Charpy impact energy are tested as well. The results show that the morphologies of welded metal (WM) consist of columnar crystal (CC) and equiaxed crystal (EC), where the upper WM is predominantly CC and the proportion of EC increases in the lower WM. The microstructure of upper WM is tempered martensite for the faster cooling rate. Because the higher content of alloying elements in lower WM improves the hardening tendencies, the lower WM is granular bainite. The heat affected zone near WM is coarsen martensite and has the highest hardness (621 HV), which is significantly higher than that of the base metal (BM) (410 HV). The hardness of the upper WM is 365 HV, which is lower than that of BM and the lower WM has higher hardness (450 HV). Therefore, the upper tensile sample of welded joint was broken in the WM and the fracture strength is 1109 MPa and lower than that of BM (1190 MPa). While the fracture position of lower tensile sample is in the BM and the strength is about 1183 MPa. The welded joint of experimental Fe-Cr-Ni-Mo steel has higher strength and the welding factor is not lower than 0.93. Moreover, the impact energy of WM is 53 J.

Key wordsFe-Cr-Ni-Mo high-strength and high toughness steel    welded joint    tempered marten-site    granular bainite    mechanical property
收稿日期: 2017-06-16     
ZTFLH:  TG457.11  
基金资助:国家重点研发计划项目Nos.2016YFB0300601和2016YFB1200501
作者简介:

作者简介 胡小锋,男,1982年生,副研究员,博士

图1  焊接接头示意图(采用11道次完成焊接)
Material C Si Ni Cr Mn Mo V S P Fe
Base metal 0.26 0.16 4.47 1.11 0.81 0.78 0.072 <0.001 0.005 Bal.
Welding wire 0.08 0.46 3.44 0.24 1.98 0.73 - 0.001 0.006 Bal.
Upper welded metal 0.09 0.33 3.44 0.27 1.84 0.72 <0.01 <0.003 0.008 Bal.
Lower welded metal 0.15 0.28 3.54 0.45 1.61 0.67 0.024 <0.003 0.008 Bal.
表1  母材、焊丝及焊缝金属上、下部位的化学成分
图2  焊接接头宏观形貌OM像、拉伸样品取样位置及显微硬度测试位置示意图
图3  板状拉伸试样尺寸示意图
图4  焊接接头不同部位显微组织的OM像
图5  焊接接头不同部位的SEM像
图6  焊接接头不同部位的TEM像
图7  焊接接头上、下部位的EPMA元素分布图
图8  焊接接头上、下部位的硬度分布
Sample Rm / MPa AKV / J
Welded joint B1 1110
B2 1107 44, 59, 55
A1 1183 Average 53
A2 1182
Base metal 1190 91
表2  母材及焊接接头的断裂强度和冲击功
图9  焊接接头上、下部位拉伸试样拉断后的照片
图10  焊接接头的拉伸和冲击断口形貌的SEM像
[1] Lee K H, Park S G, Kim M C, et al.Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents[J]. Mater. Sci. Eng., 2011, A529: 156
[2] Mulholland M D, Seidman D N.Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel[J]. Acta Mater., 2011, 59: 1881
[3] Wang L J, Cai Q W, Yu W, et al.Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel[J]. Acta Metall. Sin., 2010, 46: 687)(王立军,蔡庆伍,余伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能[J].金属学报, 2010, 46: 687)
[4] Tian Y Q, Zhang H J, Chen L S, et al.Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel[J]. Acta Metall. Sin.,2014, 50: 531)(田亚强,张宏军,陈连生等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J].金属学报, 2014, 50: 531)
[5] Han S Y, Shin S Y, Seo C H, et al.Effects of Mo, Cr, and V additions on tensile and charpy impact properties of API X80 pipeline steels[J]. Metall. Mater. Trans., 2009, 40A: 1851
[6] He X L, Yang X Q, Zhang G D, et al.Quenching microstructure and properties of 300M ultra-high strength steel electron beam welded joints[J]. Mater. Des., 2012, 40: 386
[7] Malakondaiah G, Srinivas M, Rao P R.Ultrahigh-strength low-alloy steels with enhanced fracture toughness[J]. Prog. Mater. Sci., 1997, 42: 209
[8] Tomita Y, Okawa T.Effect of modified heat-treatment on mechanical properties of 300M steel[J]. Mater. Sci. Technol., 1995, 11: 245
[9] Lee W S, Su T T.Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions[J]. J. Mater. Process. Technol., 1999, 87: 198
[10] Youngblood J L, Raghavan M.Correlation of microstructure with mechanical properties of 300M steel[J]. Metall. Trans., 1977, 8A: 1439
[11] Ritchie R O, Francis B, Server W L.Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures[J]. Metall. Trans., 1976, 7A: 831
[12] Chang T L, Tsay L W, Chen C.Influence of gaseous hydrogen on the notched tensile strength of D6ac steel[J]. Mater. Sci. Eng., 2001, A316: 153
[13] Caballero F G,Bhadeshia H K D H,Mawella K J A,et al. Design of novel high strength bainitic steels: Part 1[J]. Mater. Sci. Technol., 2001, 17: 512
[14] Caballero F G,Bhadeshia H K D H,Mawella K J A,et al.Design of novel high strength bainitic steels: Part 2[J]. Mater. Sci. Technol., 2001, 17: 517
[15] Li Y J.Welding of High Strength Steel [M]. Beijing: Metallurgical Industry Press, 2010: 89.(李亚江.高强钢的焊接[M].北京: 冶金工业出版社,2010: 89.
[16] Wen T, Hu X F, Song Y Y, et al.Effect of tempering temperature on carbide and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Acta Metall. Sin., 2014, 50: 447)(温涛,胡小锋,宋元元等. 回火温度对一种Fe-Cr-Ni-Mo高强钢碳化物及其力学性能的影响[J].金属学报, 2014, 50: 447)
[17] Wen T, Hu X F, Yan D S, et al.Effect of V contents on microstructure and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel[J]. Mater. Sci. Forum, 2014, 788: 304
[18] Wen T, Hu X F, Song Y Y, et al.Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Mater. Sci. Eng., 2013, A588: 201
[19] Zhang M, Wang Q, Li J H, et al.Microstructure numerical simulation of weld pool in rapid solidification[J]. Trans. China Weld. Inst.,, 2013, 34(7): 1)(张敏,汪强,李继红等. 焊接熔池快速凝固过程的微观组织演化数值模拟[J].焊接学报, 2013, 34(7): 1)
[20] Keehan E, Karlsson L, Andrén H O, et al. New developments with C-Mn-Ni high-strength steel weld metals, Part A-Microstructure[J]. Weld. J., 2006,85: 200-s
[21] Janovec J, Vyrostková A, Svoboda M, et al.Evolution of secondary phases in Cr-V low-alloy steels during aging[J]. Metall. Mater. Trans., 2004, 35A: 751
[22] Shi Y W, Han Z X.Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel[J]. J. Mater. Process. Technol., 2008, 207: 30
[23] Alé R M, Rebello J M A,Charlier J.A metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel[J]. Mater. Charact., 1996, 37: 89
[24] Li X D, Shang C J, Han C C, et al.Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J]. Acta Metall. Sin., 2016, 52: 1025)(李学达,尚成嘉,韩昌柴等.X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J].金属学报, 2016, 52: 1025)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.