Please wait a minute...
金属学报  2021, Vol. 57 Issue (8): 1027-1038    DOI: 10.11900/0412.1961.2020.00351
  研究论文 本期目录 | 过刊浏览 |
Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响
杨志昆1, 王浩1(), 张义文2, 胡本芙1
1.北京科技大学 材料科学与工程学院 北京 100083
2.北京钢研高纳科技股份有限公司 北京 100081
Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys
YANG Zhikun1, WANG Hao1(), ZHANG Yiwen2, HU Benfu1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing CISRI-Gaona Meterials Technology Co. Ltd. , Beijing 100081, China
引用本文:

杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
Zhikun YANG, Hao WANG, Yiwen ZHANG, Benfu HU. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. Acta Metall Sin, 2021, 57(8): 1027-1038.

全文: PDF(50035 KB)   HTML
摘要: 

采用FESEM、TEM等实验技术,系统研究了750℃、600 MPa条件下,不同Ta含量的镍基粉末高温合金的蠕变性能和蠕变过程中显微组织和变形行为特征以及合金层错能对蠕变行为的影响。结果表明,随着Ta含量的增加,合金层错能呈非线性关系降低。蠕变变形各阶段的变形行为和位错组态的变化与层错能密切相关。低Ta含量合金层错能相对较高,基体位错a/2<110>滑移被阻止在γ/γ'内界面处,不易发生位错分解,可直接进入γ'相中形成反相畴界(APB)或通过Orowan环弓弯模式绕过γ'相;当合金中Ta含量中等时,合金层错能降低,促进在γ/γ'内界面处基体位错发生分解,产生a/6<112> Shockley不全位错开始剪切γ'相,形成超点阵层错(超点阵内禀层错(SISF)或超点阵外禀层错(SESF))和扩展层错(ESF)进而转化形成形变孪晶,呈现层错和形变孪晶共同强化效应,提高蠕变性能;而高Ta含量合金层错能很低,有利于位错在不同{111}滑移面上同时形成尺寸较宽的扩展层错,并出现相互交结的交叉层错抑制形变孪晶的形成,加快蠕变形变裂纹发展。因此,合金中加入适量Ta能有效降低层错能,提高形成不全位错剪切γ'相能力和形成显微孪晶能力,增加蠕变抗力,有效改善合金蠕变性能。

关键词 粉末高温合金Ta层错能蠕变性能    
Abstract

The nickel base powder superalloy prepared by modern powder metallurgy (PM) technology is selected because it has the characteristics of compatibility with strength and damage tolerance. Moreover, it is the preferred material for the fabrication of a new generation of aero-engine turbine disks. In this study, experimental techniques, such as FESEM and TEM, are used to systematically evaluate the creep properties of powder metallurgy nickel base superalloys with different Ta contents under the conditions of 750°C and 600 MPa. Additionally, the characteristics of microstructure and defosrmation behavior during creep and the effect of stacking fault energy of the alloy on creep property are also investigated. The results show that with increase in Ta content, the energy associated with alloy stacking fault decreases, demonstrating a nonlinear relationship. The deformation behavior and dislocation configuration changes in each creep deformation stage are closely related to the stacking fault energy. The stacking fault energy of alloys with low Ta content is relatively high, the matrix dislocation a/2<110> is prevented at the γ/γ' interface, and the dislocation is not easy to decompose. Furthermore, it can directly enter the γ' phase to form antiphase boundary or to bypass the γ' phase through the Orowan ring bow bending mode. If the alloy contains a moderate amount of Ta, the stacking fault energy of the alloy is reduced, promoting the decomposition of matrix dislocations at the γ/γ' interface. This results in a/6<112> Shockley incomplete dislocations and starts to shear the γ' phase, forming superlattice stacking faults (superlattice intrinsic stacking faults (SISFs) or superlattice extrinsic stacking faults (SESFs)) and extended stacking faults (ESFs), which are then transformed into deformation twins. Therefore, presenting the co-strengthening effect of stacking faults and deformation twins, which improves the creep property. The stacking fault energy of alloys with high Ta content is very low, which is favorable to the simultaneous formation of wide-sized ESFs on different {111} slip planes. The occurrence of inter-crossing stacking faults inhibits the formation of deformation twins and accelerates the development of creep deformation cracks. These experimental results demonstrate that the addition of an appropriate amount of Ta to the alloy can effectively reduce the stacking fault energy, improve the ability to form both partial dislocation shear γ' phase and micro-twins, increase creep resistance, and effectively improve the alloy creep property.

Key wordsPM superalloy    Ta    stacking fault energy    creep property
收稿日期: 2020-09-08     
ZTFLH:  TF125.5  
基金资助:国家重点研发计划项目(2016YFB0700501)
作者简介: 杨志昆,男,1995年生,硕士生
图1  不同Ta含量镍基粉末高温合金热处理后的晶粒组织和γ'相形貌(a1, a2) 0%Ta (b1, b2) 1.2%Ta (c1, c2) 2.4%Ta (d1, d2) 3.6%Ta (e1, e2) 4.8%Ta
图2  含4.8%Ta镍基粉末高温合金层错宽度测量示意图
Alloyd / nmγSF / (mJ·m-2)
0%Ta6.0336.44
1.2%Ta6.5133.75
2.4%Ta10.4021.13
3.6%Ta12.7017.30
4.8%Ta13.4916.28
表1  合金的层错宽度和层错能
图3  不同Ta含量镍基粉末高温合金的蠕变曲线
Allloyσmax / %ε˙ / %Ts / hTf / h
0%Ta3.36920.009475139.8236
1.2%Ta4.98960.0067160278.6950
2.4%Ta4.28080.0066240370.0900
3.6%Ta1.56520.0043165250.1142
4.8%Ta0.30280.00368085.9078
表2  镍基粉末高温合金蠕变数据
图4  不同Ta含量镍基粉末高温合金蠕变速率-时间曲线
图5  不同Ta含量镍基粉末高温合金蠕变后断口附近的晶粒组织(a1, a2) 0%Ta (b1, b2) 1.2%Ta (c1, c2) 2.4%Ta (d1, d2) 3.6%Ta (e1, e2) 4.8%Ta
图6  不同Ta含量镍基粉末高温合金蠕变后断口形貌(a1, a2) 0%Ta (b1, b2)1.2%Ta (c1, c2) 2.4%Ta (d1, d2) 3.6%Ta (e1, e2) 4.8%Ta
图7  不同Ta含量镍基粉末高温合金蠕变后γ'相形貌(a1, a2) 0%Ta (b1, b2) 1.2%Ta (c1, c2) 2.4%Ta (d1, d2) 3.6%Ta (e1, e2) 4.8%Ta
图8  不同Ta含量镍基粉末高温合金蠕变后显微组织的TEM像(a, b) 0%Ta (c, d) 1.2%Ta (e, f) 2.4%Ta (g, h) 3.6%Ta (i, j) 4.8%Ta
1 Hu B F, Tian G F, Jia C C, et al. Optimization design of the high performance powder metallurgy superalloy for turbine disk [J]. Powder Metall. Technol., 2009, 27: 292
1 胡本芙, 田高峰, 贾成厂等. 涡轮盘用高性能粉末高温合金的优化设计探讨 [J]. 粉末冶金技术, 2009, 27: 292
2 Zhang Y W, Liu J T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1
2 张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1
3 Wu K, Liu G Q, Hu B F, et al. Research progress of new type high-performance P/M turbine disk superalloy [J]. Mater. China, 2010, 29(3): 23
3 吴 凯, 刘国权, 胡本芙等. 新型涡轮盘用高性能粉末高温合金的研究进展 [J]. 中国材料进展, 2010, 29(3): 23
4 Lei J F, Zheng Y, Yu J, et al. P/M Nickel-based superalloy [J]. Aerosp. Mater. Technol., 2011, 41(6): 18
4 雷景富, 郑 勇, 余 俊等. 镍基粉末高温合金的研究进展 [J]. 宇航材料工艺, 2011, 41(6): 18
5 Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ′ phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
5 胡本芙, 刘国权, 吴 凯等. 镍基粉末冶金高温合金中γ′相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257
6 Mourer D P, Huron E S, Bain K R, et al. Superalloy optimized for high-temperature performance in high-pressure turbine disks [P]. US Pat, 6521175, 2003
7 Liu L R, Jin T, Sun X F, et al. Effect of Al, Ti and Ta contents on the microstructure in Ni-base single crystal superalloy during aging [J]. Rare Met. Mater. Eng., 2008, 37: 1253
7 刘丽荣, 金 涛, 孙晓峰等. Al、Ti和Ta含量对镍基单晶高温合金时效组织的影响 [J]. 稀有金属材料与工程, 2008, 37: 1253
8 Yang J, Dong J X, Zhang M C, et al. High temperature fatigue crack growth behavior of a novel powder metallurgy superalloy FGH98 [J]. Acta Metall. Sin., 2013, 49: 71
8 杨 健, 董建新, 张麦仓等. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究 [J]. 金属学报, 2013, 49: 71
9 Park S J, Seo S M, Yoo Y S, et al. Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys [J]. Corros. Sci., 2015, 90: 305
10 Han F F, Li H, Zhang J, et al. Influence of Ta addition on the oxidation behavior of a directionally solidified nickel base superalloy [J]. J. Iron Steel Res., 2011, 23(suppl.2): 416
10 韩汾汾, 李 辉, 张 健等. Ta对铸造镍基高温合金氧化行为的影响 [J]. 钢铁研究学报, 2011, 23(): 416
11 Han F F, Chang J X, Li H, et al. Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy [J]. J. Alloys Compd., 2015, 619: 102
12 Wang Z C, Wang H, Huang H L, et al. Effect of Ta on high temperature tensile properties of advanced Ni-based powder metallurgy superalloys [J]. Chin. J. Mater. Res., 2019, 33: 331
12 王志成, 王 浩, 黄海亮等. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 331
13 Xing P Y, Zhang Y W, Jia J. Effect of Ta content on mechanical properties of FGH4098 powder superalloy [J]. Powder Metall. Ind., 2019, 29(2): 33
13 刑鹏宇, 张义文, 贾 建. Ta含量对FGH4098粉末高温合金力学性能的影响 [J]. 粉末冶金工业, 2019, 29(2): 33
14 Tsai Y L, Wang S F, Bor H Y, et al. Effects of alloy elements on microstructure and creep properties of fine-grained nickel-based superalloys at moderate temperatures [J]. Mater. Sci. Eng., 2013, A571: 155
15 Wu C J, Tao Y, Jia J. Microstructure and properties of an advanced nickel-base PM superalloy [J]. J. Iron Steel Res., Int., 2014, 21: 1152
16 Sun Y J, Shang Y, Jiang X L. Effect of Ta on creep behavior of a sort of Ni-based single crystal superalloy [J]. Mater. Mech. Eng., 2013, 37(4): 6
16 孙跃军, 尚 勇, 姜晓琳. 钽对一种镍基单晶高温合金蠕变行为的影响 [J]. 机械工程材料, 2013, 37(4): 6
17 Sun Y J, Kang J G, Gong S K. Effects of Al, Ti and Ta on microstructure and properties of Ni-based single crystal superally [J]. Spec. Cast. Nonferrous Alloys, 2008, 28: 660
17 孙跃军, 康俊国, 宫声凯. Al、Ti、Ta对镍基单晶高温合金组织和性能的影响 [J]. 特种铸造及有色合金, 2008, 28: 660
18 Cui C Y, Tian C G, Zhou Y Z, et al. Dynamic strain aging in Ni base alloys with different stacking fault energy [A]. Superalloys 2012 [C]. New York: John Wiley & Sons, Inc., 2012
19 Mukherji D, Jiao F, Chen W, et al. Stacking fault formation in γ′ phase during monotonic deformation of IN738LC at elevated temperatures [J]. Acta Metall. Mater., 1991, 39: 1515
20 Banerjee D, Banerjee R, Wang Y. Formation of split patterns of γ' precipitates in Ni-Al via particle aggregation [J]. Scr. Mater., 1999, 41: 1023
21 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng., 2003, A340: 88
22 Christian J W, Mahajan S. Deformation twinning [J]. Prog. Mater. Sci., 1995, 39: 1
23 Kolbe M. The high temperature decrease of the critical resolved shear stress in nickel-base superalloys [J]. Mater. Sci. Eng., 2001, A319-321: 383
24 Karthikeyan S, Unocic R R, Sarosi P M, et al. Modeling microtwinning during creep in Ni-based superalloys [J]. Scr. Mater., 2006, 54: 1157
25 Unocic R R, Viswanathan G B, Sarosi P M, et al. Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys [J]. Mater. Sci. Eng., 2008, A483-484: 25
26 Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316
27 Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys [J]. Prog. Mater. Sci., 2009, 54: 839
[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[4] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[5] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[6] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[7] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[8] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[9] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[10] 郝志博, 葛昌纯, 黎兴刚, 田甜, 贾崇林. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143.
[11] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[12] 张国庆,张义文,郑亮,彭子超. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144.
[13] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[14] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[15] 杨莎莎,杨峰,陈明辉,牛云松,朱圣龙,王福会. N掺杂对磁控溅射Ta涂层微观结构与耐磨损性能的影响[J]. 金属学报, 2019, 55(3): 308-316.