Please wait a minute...
金属学报  2017, Vol. 53 Issue (11): 1461-1468    DOI: 10.11900/0412.1961.2017.00099
  研究论文 本期目录 | 过刊浏览 |
电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响
王国田, 丁宏升(), 陈瑞润, 郭景杰, 傅恒志
哈尔滨工业大学材料科学与工程学院金属精密热加工国家重点实验室 哈尔滨 150001
Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique
Guotian WANG, Hongsheng DING(), Ruirun CHEN, Jingjie GUO, Hengzhi FU
National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

王国田, 丁宏升, 陈瑞润, 郭景杰, 傅恒志. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响[J]. 金属学报, 2017, 53(11): 1461-1468.
Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique[J]. Acta Metall Sin, 2017, 53(11): 1461-1468.

全文: PDF(8701 KB)   HTML
  
摘要: 

为改善Ni3Al合金的室温塑性,研究了不同电流强度的直流电场对冷坩埚定向凝固Ni3Al合金微观组织的影响。结果表明,在直流电场作用下,随着电流强度的增加,Ni3Al合金的定向凝固组织的一次枝晶间距变小,凝固界面变得平直。未施加直流电流时,凝固组织由L12型结构的Ni3Al基体和B2型结构的NiAl析出相两相组成。当定向凝固过程中施加直流电流时,凝固组织中析出相由B2型NiAl相转变为呈薄层状、晶面对称的孪晶马氏体NiAl相。

关键词 Ni3Al金属间化合物直流电场定向凝固微观组织    
Abstract

Due to their excellent high-temperature strength, and good oxidation resistance, Ni3Al-based alloys have long attracted considerable interest as a class of high-temperature structural material. These properties, combined with their unique high thermal conductivity, make them ideal for special applications, such as blades in gas turbines and jet engines. However, polycrystalline Ni3Al alloys show almost no ductility and extremely low fracture resistance at ambient temperatures. Ni3Al alloys with the high ductility at room-temperature can be adjusted by the microstructure through directional solidification (DS) and matching. It has been shown that the electric field can refine the solidification structure, reduce the dendrite spacing, promote the diffusion and change the solute redistribution in the solidification process. In order to improve the room temperature ductility of Ni3Al alloy, the effect of current intensity on microstructure of DS Ni-25Al alloy is investigated. In this work, the effects of constant current intensity and NiAl phase on the microstructure are researched. The results show that in the DC electric field, as the result of the aggregation of current along dendrite tip and the Joule heat at the tip of dendrite, the primary dendritic spacing (λ) decreases with the increasing of current intensity. And the solid-liquid interface tends to be straight resulting from the Joule heat and Peltier effect caused by the segregation of current and the difference in conductivity between solid and liquid interface. When no direct current is applied the DS samples contain the L12 structure of Ni3Al matrix and B2 structure of NiAl precipitate phase. The microstructure is a duplex structure which consist of gray Ni3Al matrix and black NiAl precipitates. NiAl precipitates with regular shape and has obvious orientation along with the growth direction. When the DC current is applied, NiAl precipitates is irregular and dispersion and has no obvious directionality, due to Joule heat effect generated by the current effect, the undercooling increased and the precipitated NiAl phase transformed into thin martensite NiAl phase with twin crystal symmetry from the NiAl-B2 type structure.

Key wordsNi3Al    intermetallics    DC electric field    directional solidification    microstructure
收稿日期: 2017-03-27     
ZTFLH:  TG244.3  
基金资助:国家自然科学基金项目No.51471062
作者简介:

作者简介 王国田,男,1978年生,博士生

图1  电磁连续铸造设备示意图
图2  不同电流强度下定向凝固Ni3Al合金的XRD谱
图3  不同电流强度作用下定向凝固Ni3Al合金微观组织的SEM像
图4  不同电流强度作用下定向凝固Ni3Al合金片层组织的SEM像
图5  电流强度为0 A时定向凝固Ni3Al的TEM像和SAED花样
图6  电流强度为15 A时定向凝固合金中NiAl的SAED花样
图7  电流强度为20 A时定向凝固合金中NiAl相的TEM像和SAED花样
图8  不同电流强度下定向凝固Ni3Al试棒凝固界面的宏观形貌
图9  电流强度与下凹深度Δh的关系
图10  不同电流强度作用下定向凝固Ni3Al试样横截面组织的OM像
图11  一次枝晶间距随电流强度的变化规律
[1] Raju S V, Oni A A, Godwal B K, et al.Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure[J]. J. Alloys Compd., 2015, 619: 616
[2] Ivanovski V N, Umi?evi? A, Belo?evi?-?avor J, et al. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys[J]. J. Alloys Compd., 2015, 651: 705
[3] Zhang H J, Xiao J F, Wen W D, et al.Study on a statistical unit cell model for Ni3Al-base superalloy[J]. Mech. Mater., 2016, 98: 1
[4] Liu W, Krol T, Nembach E.Precipitation strengthening, yield stress anomaly and strain rate sensitivity of an L12-ordered intermetallic (Ni, Co)3(Al, Ti) alloy[J]. Scr. Mater., 1998, 39: 1419
[5] Sun B D, Li D Q, Xu Y, et al.The effects of RE on as cast morphology of (NiAl+Ni3Al) intermetallics[J]. J. Shanghai Jiaotong Univ., 1997, 31(1): 83(孙宝德, 郦定强, 徐颍等. 稀土对(NiAl+Ni3Al)双相区金属间化合物铸态组织的影响[J]. 上海交通大学学报, 1997, 31(1): 83)
[6] Peng P, Zhou Z, Xie Q, et al.Development of rapidly solidified NiAlFe based shape memory alloys[J]. Mater. Rev., 1996, (3): 20(彭平, 周征, 谢泉等. 快速凝固NiAlFe系形状记忆合金的研究进展[J]. 材料导报, 1996, (3): 20)
[7] Taniguchi S, Yasuda H, Takatani K.Preface to the special issue on “advanced application of electromagnetic force to materials processing”[J]. ISIJ Int., 2003, 43: 799
[8] Feonychev A I, Bondareva N V.Effect of a rotating magnetic field on convection stability and crystal growth in zero gravity and on the ground[J]. J. Eng. Phys. Thermophys., 2003, 77: 731
[9] Misra A K.A novel solidification technique of metals and alloys: Under the influence of applied potential[J]. Metall. Trans., 1985, 16A: 1354
[10] Misra A K.Misra technique1 applied to solidification of cast iron[J]. Metall. Trans., 1986, 17A: 358
[11] Ahmed S, Bond R, McKannan E C. Solidification processing superalloys in an electric field[J]. Adv. Mater. Proc., 1991, 140: 30
[12] Ahmed S, McKannan E. Control of γ' morphologyin nickel base superalloys through alloy design and densification processing under electric field[J]. Mater. Sci. Technol., 1994, 10: 941
[13] Ding H S, Zhang Y, Jiang S Y, et al.Influences of pulse electric current treatment on solidification microstructures and mechanical properties of Al-Si piston alloys[J]. China Foundry, 2009, 6: 24
[14] Wang J, Yin J J, Ding Y T, et al.Effect of direct current electric field on the microstructure of ZA27 alloy[J]. Foundry, 2003, 52: 84(王劲, 尹建军, 丁雨田等. 直流电场对ZA27合金凝固组织的影响[J]. 铸造, 2003, 52: 84)
[15] Pfann W G, Wagner R S.Principles of field freezing[J]. Trans. Metall. Soc. AIME, 1962, 224: 1139
[16] Xu Q G, Wu B L, Wan G, et al.Effect of direct current electric fieid on structure of directionally solidified Al-4.5%Cu alloy[J]. J. Aeronaut. Mater., 2006, 26(1): 16(徐前刚, 武保林, 万刚等. 直流电场对Al-4.5%Cu合金定向凝固组织的影响[J]. 航空材料学报, 2006, 26(1): 16)
[17] Guo F J, Li L Z, Cang D Q, et al.Solute activity change model of binary liquid alloys in electrical field[J]. J. Univ. Sci. Technol. Beijing, 2005, 27: 27(郭发军, 李玲珍, 苍大强等. 电场作用下二元液态合金中溶质活度变化理论模型[J]. 北京科技大学学报, 2005, 27: 27)
[18] Chang G W, Yuan Y J, Wang Z D, et al.Effect of electric current density on columnar crystal spacing during continuous unidirectional solidification[J]. Acta Metall. Sin., 2000, 36: 30(常国威, 袁永军, 王自东等. 电流密度对定向凝固组织中柱状晶间距的影响[J]. 金属学报, 2000, 36: 30)
[19] Li W F, Yang Y S, Yu L, et al.Effect of direct current electric field on the microstructure of nickel-based superalloy K417G[J]. J. Mater. Eng., 2001, (9): 7(李万锋, 杨院生, 于力等. 直流电场作用对K417G镍基高温合金凝固组织的影响[J]. 材料工程, 2001, (9): 7)
[20] Prodhan A, Sanyal D.Cooling curves analysis of aluminium solidified without and with magnetic or electric field[J]. J. Mater. Sci. Lett., 1997, 16: 958
[21] ?ad?rl? E, Kaya H, Gündüz M.Effect of growth rates and temperature gradients on the lamellar spacing and the undercooling in the directionally solidified Pb-Cd eutectic alloy[J]. Mater. Res. Bull., 2003, 38: 1457
[22] B?yük U, Mara?l? N, Kaya H, et al.Directional solidification of Al-Cu-Ag alloy[J]. Appl. Phys., 2009, 95A: 923
[23] Tian S.The Physical Properties of Materials [M]. Beijing: Beihang University Press, 2004: 38(田莳. 材料物理性能 [M]. 北京: 北京航空航天大学出版社, 2004: 38)
[24] Fu D J, Huang L G, Li S.Effect of DC electric field on microstructure and properties of Al-5Fe based alloy[J]. Ordnance Mater. Sci. Eng., 2013, 36(5): 46(付大军, 黄立国, 李爽. 直流电场对Al-5Fe基合金组织和性能的影响[J]. 兵器材料科学与工程, 2013, 36(5): 46)
[25] He S X, Wang J, Zhou Y H.Application of electric current during metal solidification process[J]. Spec. Casting Nonferrous Alloys, 2001, (5): 28(何树先, 王俊, 周尧和. 电流在金属凝固过程中的应用[J]. 特种铸造及有色合金, 2001, (5): 28)
[26] Liu J, Li Z H, Cen Q H, et al.Effect of external electric field on solidification structure of alloy[J]. Foundry, 2012, 61: 877(刘瑾, 黎振华, 岑启宏等. 外加电场对合金凝固组织的影响[J]. 铸造, 2012, 61: 877)
[27] Wiegel M E K, Matthiesen D H. Determination of the peltier coe-fficient of germanium in a vertical Bridgman-Stockbarger furnace[J]. J. Cryst. Growth, 1997, 174: 194
[28] Corre S, Duffar T, Bernard M, et al.Numerical simulation and validation of the Peltier pulse marking of solid/liquid interfaces[J]. J. Cryst. Growth, 1997, 180: 604
[29] Huang L G, Fu D J, Gao Z Y.Application of continuous electric field in metal solidification[J]. J. Mater. Eng., 2011, (4): 94(黄立国, 付大军, 高志玉. 连续电流场在金属凝固过程中的应用研究[J]. 材料工程, 2011, (4): 94)
[30] Gu G D, Xu Y Y, An G Y, et al.Cellular growth of Sn-5%Bi alloy in electric field[J]. Chin. J. Mech. Eng., 1991, 27(5): 37(顾根大, 徐雁允, 安阁英等. 电场作用下Sn-5%Bi合金的胞晶生长[J]. 机械工程学报, 1991, 27(5): 37)
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[4] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[7] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[12] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[13] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[14] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.