Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 879-887    DOI: 10.11900/0412.1961.2016.00436
  本期目录 | 过刊浏览 |
碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究
董丹,蒋百灵(),郭萌,杨超
西安理工大学材料科学与工程学院 西安 710048
Study on Nano-Crystallization Mechanism and Tribological Performance of Amorphous Carbon-Based Coatings
Dan DONG,Bailing JIANG(),Meng GUO,Chao YANG
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
Dan DONG, Bailing JIANG, Meng GUO, Chao YANG. Study on Nano-Crystallization Mechanism and Tribological Performance of Amorphous Carbon-Based Coatings[J]. Acta Metall Sin, 2017, 53(7): 879-887.

全文: PDF(1116 KB)   HTML
摘要: 

采用磁控溅射离子镀技术制备了一组不同Cr含量的碳基离子镀层,利用XRD、SEM、TEM、XPS及Raman光谱对镀层的微观结构进行了表征,并分析了微观结构对镀层的力学性能及摩擦学性能的影响。实验结果表明:随着Cr含量的增加,碳基镀层从典型的非晶结构转变为纳米晶/非晶复合结构,sp2杂化键含量逐渐增加,sp3杂化键含量逐渐减少,并且碳基镀层的硬度和内应力均随着Cr含量的增加而呈现减小的趋势。微量的金属Cr掺杂可有效地降低镀层的摩擦系数和比磨损率。过量的Cr掺杂虽有利于sp2杂化键含量的提高,但金属相的弥散分布导致了碳基镀层摩擦系数和比磨损率的增大,摩擦学性能变差。

关键词 碳基镀层Cr含量微观结构摩擦学性能    
Abstract

Amorphous carbon coatings mainly composed of sp3 and sp2 bonds have a great potential to be widely used in modern industry for their attractive properties, such as high hardness, high wear resistance and low friction coefficient. However, the high internal stress and poor adhesion of amorphous carbon coatings limit the range of industrial applications. In order to reduce the internal stress and improve the tribological performance, a series of carbon-based coatings with different atomic fraction of Cr were prepared by magnetron sputtering. The microstructure of coatings was characterized by XRD, SEM, TEM, XPS and Raman spectra. The mechanical and tribological properties of coatings were analyzed. The results showed that with the increase of atomic fraction of Cr, the carbon-based coatings changed from amorphous structure to nano-crystalline/amorphous composite structure, the ratio of sp2 bond increased and the ratio of sp3 bond decreased gradually. Also, the hardness and the internal stress showed a decreasing trend with the increase of atomic fraction of Cr. In addition, a small amount of Cr doping could effectively reduce the friction coefficient and specific wear rates of coatings. Excessive Cr doping is beneficial to the increase of the ratio of sp2 bond, however, the dispersion distribution of the metal phase leads to the increase of the friction coefficient and specific wear rates, so that the tribological properties were deteriorated.

Key wordscarbon-based coating    Cr content    microstructure    tribological performance
收稿日期: 2016-10-05     
基金资助:国家自然科学基金项目No.51271144
Sample No. I / A U / V p / (Wcm-2) cCr / % d / nm
1 0 0 0 0.0 869
2 0.05 300 0.33 2.0 894
3 0.10 320 0.71 6.5 1067
4 0.20 330 1.50 17.3 1094
5 0.30 340 2.30 25.5 1227
表1  碳基离子镀层的沉积参数
图1  不同Cr含量镀层的表面形貌
图2  不同Cr含量镀层的Raman光谱
图3  不同Cr含量镀层的ID/IG及G峰位置
图4  不同Cr含量镀层的C1s精细谱
图5  不同Cr含量镀层的C1s精细谱拟合结果
图6  不同Cr含量镀层的XRD谱
图7  不同Cr含量镀层工作层的HRTEM像和SAED谱
图8  不同Cr含量镀层的力学性能
图9  不同Cr含量镀层的摩擦系数
图10  不同Cr含量镀层的比磨损率
图11  不同Cr含量镀层的磨痕形貌
[1] Du D X, Liu D X, Ye Z Y, et al.Fretting wear and fretting fatigue behaviors of diamond-like carbon and graphite-like carbon films deposited on Ti-6Al-4V alloy[J]. Appl. Surf. Sci., 2014, 313: 462
[2] Kornaev A, Savin L, Kornaeva E, et al.Influence of the ultrafine oil additives on friction and vibration in journal bearings[J]. Tribol. Int., 2016, 101: 131
[3] Lan Z C, Liu S H, Xiao H P, et al.Frictional behavior of wax-oil gels[J]. Tribol. Int., 2016, 96: 122
[4] Wei J, Cui G J.Friction and wear behavior of Fe-Cr-B alloys in liquid paraffin oil[J]. J. Tribol., 2015, 137: 031603
[5] Vanhulsel A, Velasco F, Jacobs R, et al.DLC solid lubricant coatings on ball bearings for space applications[J]. Tribol. Int., 2007, 40: 1186
[6] Yonekura D, Chittenden R J, Dearnley P A.Wear mechanisms of steel roller bearings protected by thin, hard and low friction coatings[J]. Wear, 2005, 259: 779
[7] Wu X, Ohana T, Tanaka A, et al.Tribochemical reaction of Si-DLC coating in water studied by stable isotopic tracer[J]. Diamond Relat. Mater., 2008, 17: 147
[8] Modabberasl A, Kameli P, Ranjbar M, et al.Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field[J]. Carbon, 2015, 94: 485
[9] Sheeja D, Tay B K, Yu L J, et al.Fabrication of amorphous carbon cantilever structures by isotropic and anisotropic wet etching methods[J]. Diamond Relat. Mater., 2003, 12: 1495
[10] Weissmantel S, Reisse G, Rost D. Preparation of superhard amorphous carbon films with low internal stress [J]. Surf. Coat. Technol., 2004, 188-189: 268
[11] Zhang Y B, Lau S P, Sheeja D, et al.Study of mechanical properties and stress of tetrahedral amorphous carbon films prepared by pulse biasing[J]. Surf. Coat. Technol., 2005, 195: 338
[12] Viana G A, Lacerda R G, Freire Jr F L, et al. ESR investigation of graphite-like amorphous carbon films revealing itinerant states as the ones responsible for the signal[J]. J. Non-Cryst. Solids, 2008, 354: 2135
[13] Field S K, Jarratt M, Teer D G.Tribological properties of graphite-like and diamond-like carbon coatings[J]. Tribol. Int., 2004, 37: 949
[14] Wang Y J, Li H X, Ji L, et al.Microstructure, mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering[J]. Surf. Coat. Technol., 2011, 205: 3058
[15] Wang Y X, Li J L, Shan L.Tribological performances of the graphite-like carbon films deposited with different target powers in ambient air and distilled water[J]. Tribol. Int., 2014, 73: 17
[16] Camino D, Jones A H S, Mercs D, et al. High performance sputtered carbon coatings for wear resistant applications[J]. Vacuum, 1999, 52: 125
[17] Fox V, Jones A, Renevier N M, et al.Hard lubricating coatings for cutting and forming tools and mechanical components[J]. Surf. Coat. Technol., 2000, 125: 347
[18] Singh V, Jiang J C, Meletis E I.Cr-diamondlike carbon nanocomposite films: Synthesis, characterization and properties[J]. Thin Solid Films, 2005, 489: 150
[19] Hovsepian P E, Lewis D B, Constable C, et al. Combined steered cathodic arc/unbalanced magnetron grown C/Cr nanoscale multilayer coatings for tribological applications [J]. Surf. Coat. Technol., 2003, 174-175: 762
[20] Yang Y Y, Peng Z J, Fu Z Q, et al.Study on W graded doping DLC composite films with multicomponent transition layer[J]. Acta Metall. Sin., 2010, 46: 34
[20] (杨义勇, 彭志坚, 付志强等. 多组分缓冲层W梯度掺杂DLC复合薄膜研究[J]. 金属学报, 2010, 46: 34)
[21] Nie C Y, Zhang B Y, Xie H M.Structure analysis of Ti-doped DLC coatings deposited by unbalanced magnetron sputtering[J]. Acta Metall. Sin., 2007, 43: 1207
[21] (聂朝胤, 张碧云, 谢红梅. 非平衡磁控溅射掺Ti类金刚石薄膜的结构分析[J]. 金属学报, 2007, 43: 1207)
[22] Wu Z Z, Tian X B, Cheng S D, et al.Microstructure and mechanical properties of DLC films doped with high crystallinity CrN nanoparticles[J]. Acta Metall. Sin., 2012, 48: 283
[22] (吴忠振, 田修波, 程思达等. 高结晶度CrN纳米粒子掺杂的DLC薄膜的显微结构及力学性能[J]. 金属学报, 2012, 48: 283)
[23] Sheeja D, Tay B K, Sun C Q, et al.Characterization of Ti-containing amorphous carbon films prepared on titanium substrates[J]. J. Mater. Sci., 2003, 38: 421
[24] Wang A Y, Lee K R, Ahn J P, et al.Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique[J]. Carbon, 2006, 44: 1826
[25] Fu R K Y, Mei Y F, Fu M Y, et al. Thermal stability of metal-doped diamond-like carbon fabricated by dual plasma deposition[J]. Diamond Relat. Mater., 2005, 14: 1489
[26] Uglov V V, Kuleshov A K, Rusalsky D P, et al. Wear-resistant metal-carbon composite coating [J]. Surf. Coat. Technol., 2000, 128-129: 150
[27] Yang S, Teer D G.Investigation of sputtered carbon and carbon/chromium multi-layered coatings[J]. Surf. Coat. Technol., 2000, 131: 412
[28] Yang S, Li X, Renevier N M, et al. Tribological properties and wear mechanism of sputtered C/Cr coating [J]. Surf. Coat. Technol., 2001, 142-144: 85
[29] Ferrari A C, Robertson J.Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev., 2000, 61B: 14095
[30] Gradowski M V, Ferrari A C, Ohr R, et al. Resonant Raman characterisation of ultra-thin nano-protective carbon layers for magnetic storage devices [J]. Surf. Coat. Technol., 2003, 174-175: 246
[31] Kanda K, Yamada N, Okada M, et al.Graphitization of thin films formed by focused-ion-beam chemical-vapor-deposition[J]. Diamond Relat. Mater., 2009, 18: 490
[32] Liu L, Wang T, Huang J L, et al.Diamond-like carbon thin films with high density and low internal stress deposited by coupling DC/RF magnetron sputtering[J]. Diamond Relat. Mater., 2016, 70: 151
[33] Chiu S M, Lee S C, Wang C H, et al.Electrical and mechanical properties of DLC coatings modified by plasma immersion ion implantation[J]. J. Alloys Compd., 2008, 449: 379
[34] Tsai P C, Chen K H.Evaluation of microstructures and mechanical properties of diamond like carbon films deposited by filtered cathodic arc plasma[J]. Thin Solid Films, 2008, 516: 5440
[35] Holmberg K, Ronkainen H, Laukkanen A, et al.Friction and wear of coated surfaces-scales, modelling and simulation of tribomechanisms[J]. Surf. Coat. Technol., 2007, 202: 1034
[36] Wang Y X, Wang L P, Li J L, et al.Tribological properties of graphite-like carbon coatings coupling with different metals in ambient air and water[J]. Tribol. Int., 2013, 60: 147
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[3] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[4] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[5] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[6] 张显程, 张勇, 李晓, 王梓萌, 贺琛贇, 陆体文, 王晓坤, 贾云飞, 涂善东. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
[7] 马敏静, 屈银虎, 王哲, 王军, 杜丹. Ag-CuO触点材料侵蚀过程的演化动力学及力学性能[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[9] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[10] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[11] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[12] 刘天, 罗锐, 程晓农, 郑琦, 陈乐利, 王茜. 形成Al2O3表层的奥氏体不锈钢加速蠕变实验研究[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] 李萍, 林泉, 周玉峰, 薛克敏, 吴玉程. W高压扭转显微组织演化过程TEM分析[J]. 金属学报, 2019, 55(4): 521-528.
[14] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[15] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.