Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 211-219    DOI: 10.11900/0412.1961.2016.00353
  本期目录 | 过刊浏览 |
Mg-5Al-xCa合金的热裂行为
王峰(),董海阔,王志,毛萍莉,刘正
沈阳工业大学材料科学与工程学院 沈阳 110870
Hot Cracking Behavior of Mg-5Al-xCa Alloys
Feng WANG(),Haikuo DONG,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(6574 KB)   HTML
摘要: 

在浇注温度700 ℃、模具温度200 ℃条件下,通过热裂曲线和凝固曲线测试以及OM、XRD、SEM等手段分析了Ca加入量对Mg-5Al-xCa (x=0.5、1.0、2.0、3.0、4.0、5.0,质量分数,%)合金热裂敏感性的影响。结果表明,当Ca加入量增加到4.0%时,合金的热裂敏感性随着Ca加入量的增加而减小;Mg-5Al-4.0Ca合金的热裂敏感性最小,其热裂敏感性系数仅为0.824;Ca加入量增加到5.0%时,合金的热裂敏感性又出现上升,其热裂敏感性系数上升到0.96。加入适量的Ca会降低Mg-5Al-xCa合金凝固时α-Mg的析出温度,并抑制Mg17Al12相形成,缩小合金凝固温度范围,增加组织中的共晶含量,有利于合金凝固后期的补缩,从而降低合金的热裂敏感性。但加入过多的Ca会增加含Ca脆性相的数量,并使合金组织发生粗化,从而导致合金的热裂敏感性增加。

关键词 Mg-Al-Ca合金热裂敏感性凝固曲线显微组织    
Abstract

Mg-Al-Ca base alloys have great potential for application because of its low cost and good high temperature creep properties, but its higher hot cracking susceptibility greatly limits the application of the alloy. The effect of Ca addition on the hot cracking susceptibility of Mg-5Al-xCa (x=0.5, 1.0, 2.0, 3.0, 4.0, 5.0, mass fraction, %) alloys at the pouring temperature 700 ℃ and mold temperature 200 ℃ was studied by using hot cracking curve test, solidification curve test, OM, XRD and SEM. The results showed that the hot cracking susceptibility of alloys decreased with increasing Ca addition until to 4.0%, and the Mg-5Al-4.0Ca alloy had minimal hot cracking susceptibility, which cracking susceptibility coefficient was only 0.824. But when Ca addition increased to 5.0%, the hot cracking susceptibility of the alloy increased, and the cracking susceptibility coefficient increased to 0.96. The appropriate Ca addition can reduce the precipitation temperature of α-Mg in Mg-5Al-xCa alloys, inhibit precipitation of Mg17Al12 phase, narrow solidification temperature range of the alloy and increase eutectic content, which are helpful for the alloy having a stronger ability of compensation at the solidification end to decrease hot cracking susceptibility. But excessive Ca addition will increase the numbers of brittle phases containing Ca and coarsen the microstructure, resulting in the increase of hot cracking susceptibility.

Key wordsMg-Al-Ca alloy    hot cracking susceptibility    solidification curve    microstructure
收稿日期: 2016-08-02     
基金资助:国家自然科学基金项目Nos.51504153和51571145以及辽宁省自然科学基金项目No.201602548

引用本文:

王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
Feng WANG, Haikuo DONG, Zhi WANG, Pingli MAO, Zheng LIU. Hot Cracking Behavior of Mg-5Al-xCa Alloys. Acta Metall Sin, 2017, 53(2): 211-219.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00353      或      https://www.ams.org.cn/CN/Y2017/V53/I2/211

Alloy Al Ca Mg
Mg-5Al-0.5Ca 4.65 0.42 Bal.
Mg-5Al-1.0Ca 4.80 0.83 Bal.
Mg-5Al-2.0Ca 4.59 1.67 Bal.
Mg-5Al-3.0Ca 4.81 2.54 Bal.
Mg-5Al-4.0Ca 4.67 3.61 Bal.
Mg-5Al-5.0Ca 4.52 4.51 Bal.
表1  Mg-5Al-xCa合金的化学成分
图1  热裂测试系统示意图及热裂试样
图2  Mg-5Al-xCa合金热裂试样照片
图3  Mg-5Al-xCa合金热裂曲线
Alloy Hot crack initiation Hot crack propagation
θi / ℃ fs-i / % Fr / N tp / s vP / (Ns-1)
Mg-5Al-0.5Ca 467 98.2 0.614 0.72 0.853
Mg-5Al-1.0Ca 451 97.4 0.536 1.26 0.425
Mg-5Al-2.0Ca 430 97.1 0.371 0.91 0.408
Mg-5Al-3.0Ca 434 97.6 0.215 1.17 0.184
Mg-5Al-4.0Ca - - - - -
Mg-5Al-5.0Ca 441 98.5 2.079 2.67 0.779
表2  Mg-5Al-xCa合金热裂测试结果
图4  Mg-5Al-xCa合金凝固曲线
Alloy Peak A Peak B Peak C Peak D Peak E
α-Mg L→α+C14 L→α+C36 L+C36 → α+A12 L→α+C14+C36
Mg-5Al-0.5Ca 621 525 513 424 -
Mg-5Al-1.0Ca 619 525 519 - -
Mg-5Al-2.0Ca 614 528 521 - -
Mg-5Al-3.0Ca 610 - 528 - -
Mg-5Al-4.0Ca 598 - 528 - 511
Mg-5Al-5.0Ca 598 - 528 - 512
表3  图4中Mg-5Al-xCa合金凝固曲线对应关键点反应及反应温度
图5  Mg-5Al-xCa合金凝固温度范围及热裂敏感性系数
图6  Mg-5Al-xCa合金热裂部位的显微组织
图7  Mg-5Al-xCa合金SEM像
图8  Mg-5Al-xCa合金的XRD谱
图9  Mg-5Al-4.0Ca合金裂纹延伸末端及局部SEM像
[1] Liu Z, Wang Z G, Wang Y, et al.Application and developing tendency of magnesium die casting alloys in automobile industry[J]. Spec. Cast. Nonferrous Alloys, 2002, 22(S1): 300
[1] (刘正, 王中光, 王越等. 压铸镁合金在汽车工业中的应用和发展趋势[J]. 特种铸造及有色合金, 2002, 22(S1): 300)
[2] Lou Y, Bai X, Li L X.Effect of Sr addition on microstructure of as-cast Mg-Al-Ca alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1247
[3] Suzuki A, Saddock N D, Jones J W, et al.Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys[J]. Acta Mater., 2005, 53: 2823
[4] Zhang J, Feng Y C, Wang Q, et al.Effects of different Ca and Nd addition on corrosion resistance of Mg-6Al alloys[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 430
[4] (张靖, 冯义成, 王琴等. 不同Ca和Nd含量对Mg-6Al合金腐蚀性能的影响[J]. 特种铸造及有色合金, 2015, 35: 430)
[5] Bai J, Sun Y S, Xue F, et al.Microstructures and creep properties of Mg-6Al-(Sr, Ca) alloys[J]. Acta Metall. Sin., 2006, 42: 1267
[5] (白晶, 孙扬善, 薛烽等. Mg-6Al-(Sr, Ca)合金的显微组织和蠕变性能[J]. 金属学报, 2006, 42: 1267)
[6] Li H Y, Bai Y Y, Zhang H T, et al.Effect of Mn on hot cracking tendency of Mg-6.5Zn alloys[J]. Acta Metall. Sin., 2014, 50: 1237
[6] (李浩宇, 柏媛媛, 张海涛等. Mn对Mg-6.5Zn合金热裂倾向性的影响[J]. 金属学报, 2014, 50: 1237)
[7] Liang W Z, Ji Z S, Zuo F, et al.Present research status and developing tendency of heat resistance Mg alloy[J]. Spec. Cast. Nonferrous Alloys, 2003, 23(2): 39
[7] (梁维中, 吉泽升, 左锋等. 耐热镁合金的研究现状及发展趋势[J]. 特种铸造及有色合金, 2003, 23(2): 39)
[8] Luo A H, Sachdev A K, Powell B R.Advanced casting technologies for lightweight automotive applications[J]. Foundry, 2011, 60: 113
[8] (罗爱华, Sachdev A K, Powell B R.汽车轻量化先进铸造技术[J]. 铸造, 2011, 60: 113)
[9] Cao G, Kou S.Hot tearing of ternary Mg-Al-Ca alloy castings[J]. Metall. Mater. Trans., 2006, 37A: 3647
[10] Cao G, Kou S.Hot cracking of binary Mg-Al alloy castings[J]. Mater. Sci. Eng., 2006, A417: 230
[11] Qiu K Q, Tao S R, Re Y, et al.Effect of Ca on the hot tearing susceptibility of Mg-7Al-2Si casting alloys[J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 186
[11] (邱克强, 陶思伟, 热焱等. Ca对Mg-7Al-2Si合金热裂倾向的影响[J]. 特种铸造及有色合金, 2013, 33: 186)
[12] Huang H, Fu P H, Peng L M, et al.Effect of mould temperature and pouring temperature on the hot tearing and fluidity of AZ91D magnesium alloy[J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 81
[12] (黄皓, 付彭怀, 彭立明等. 模具温度和浇注温度对AZ91D镁合金热裂和流动性能的影响[J]. 特种铸造及有色合金, 2012, 32: 81)
[13] Suzuki A, Saddock N D, Jones J W, et al.Phase equilibria in the Mg-Al-Ca ternary system at 773 and 673 K[J]. Metall. Mater. Trans., 2006, 37A: 975
[14] Clyne T W, Wolf M, Kurz W.The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting[J]. Metall. Trans., 1982, 13B: 259
[15] Clyne T W, Davies G J.The influence of composition on solidification cracking susceptibility in binary alloy systems[J]. Brit. Found., 1981, 74: 65
[16] Hou D H, Liang S M, Chen R S, et al.Solidification behavior and grain size of sand casting Mg-6Al-xZn alloys[J]. Acta Metall. Sin., 2015, 50: 601
[16] (侯丹辉, 梁松茂, 陈荣石等. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸[J]. 金属学报, 2015, 50: 601)
[17] Xu S W, Matsumoto N, Yamamoto K, et al.High temperature tensile properties of as-cast Mg-Al-Ca alloys[J]. Mater. Sci. Eng., 2009, A509: 105
[18] Yang G Y, Hao Q T, Jie W Q, et al.Effect of Ca addition on the microstructure and mechanical properties of Mg-5Al-0.4Zn casting alloy[J]. Acta Metall. Sin., 2005, 41: 933
[18] (杨光昱, 郝启堂, 介万奇等. Ca加入量对Mg-5Al-0.4Zn基铸造合金组织与力学性能的影响[J]. 金属学报, 2005, 41: 933)
[19] TerBush J R, Chen O H, Jones J W, et al. The dependence of creep behavior on elemental partitioning in Mg-5Al-3Ca-xSn alloys[J]. Metall. Mater. Trans., 2012, 43A: 3120
[20] Liang S M, Zhang H W, Xia M X, et al.Microstructure and mechanical properties of melt-conditioned high-pressure die-cast Mg-Al-Ca alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1205
[21] Liu Z, Zhang S B, Mao P L, et al.Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 907
[22] Zhang D T, Suzuki M, Maruyama K.Study on the texture of a friction stir welded Mg-Al-Ca alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2006, 19: 335
[23] Wang S Y, Wang Q D, Ding W J, et al.Research development of hot tear mechanism for cast alloys[J]. Spec. Cast. Nonferrous Alloys, 2000, 20(2): 48
[23] (王业双, 王渠东, 丁文江等. 合金的热裂机理及其研究进展[J]. 特种铸造及有色合金, 2000, 20(2): 48)
[24] Ding H, Fu H Z, Liu Z Y, et al.Compensation of solidification contraction and hot cracking tendency of alloys[J]. Acta Metall. Sin., 1997, 33: 921
[24] (丁浩, 傅恒志, 刘忠元等. 凝固收缩补偿与合金的热裂倾向[J]. 金属学报, 1997, 33: 921)
[25] Zhang Z M, Lü T, Xu C J, et al.Microstructure of binary Mg-Al eutectic alloy wires produced by the Ohno continuous casting process[J]. Acta Metall. Sin.(Engl. Lett.), 2008, 21: 275
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[5] 肖宏,许朋朋,祁梓宸,吴宗河,赵云鹏. 感应加热异温轧制制备钢/铝复合板[J]. 金属学报, 2020, 56(2): 231-239.
[6] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[7] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[8] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[9] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[10] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[11] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[12] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[13] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[14] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[15] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.