Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1517-1526    DOI: 10.11900/0412.1961.2016.00234
  本期目录 | 过刊浏览 |
多相强化型马氏体时效不锈钢中的合金元素偏聚效应*
田家龙1,2,李永灿3,王威1(),严伟1,单以银1,姜周华2,杨柯1
1 中国科学院金属研究所, 沈阳 110016
2 东北大学材料与冶金学院, 沈阳 110819
3 南京航空航天大学材料科学与技术学院, 南京 210016
ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL
Jialong TIAN1,2,Yongcan LI3,Wei WANG1(),Wei YAN1,Yiyin SHAN1,Zhouhua JIANG2,Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China
3 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(8366 KB)   HTML
  
摘要: 

采用高分辨透射电镜(HRTEM)和原子探针层析技术(APT)等分析手段研究了一种多相强化型马氏体时效不锈钢时效过程中的元素偏聚特征及其与材料力学和耐蚀性能的关系. 结果表明, 马氏体时效不锈钢在时效过程中析出3种强化相: 富Mo的R′相、Ni3Ti金属间化合物η相和富Cr的α′相. 其中R′相与η相一起形成核壳状结构, α′相则单独弥散分布于基体中. 时效时间延长至40 h后, 主要强化相η相的成分、数量密度和等效半径基本稳定, 同时马氏体时效不锈钢的强度不再发生明显的变化, 这种优异的抗过时效能力是由于核壳状结构的形成. 腐蚀实验结果表明, 由于富Cr的α′相的析出, 导致贫Cr区的形成, 进而降低了马氏体时效不锈钢的耐蚀性能.

关键词 马氏体时效不锈钢,合金元素偏聚,力学性能,耐蚀性能    
Abstract

Maraging stainless steels are the most widely used high strength stainless steels because of their excellent combination of high strength, superior corrosion resistance and good weldability. The typical heat treatment of maraging stainless steel consists of solution treatment and the following aging treatment. Aging treatment is the important process since it affects the steel's final properties and then determines its application prospect. Thus, understanding well the segregation behavior of alloying elements during the aging treatment plays a key role in developing the new maraging stainless steel with superior properties. In this work, segregation of alloying elements as well as its effect on mechanical properties and corrosion resistance of a multi-phase strengthened maraging stainless steel was studied by HRTEM and APT analyses. It was found that three precipitating species including Mo-rich R′ phase, η phase and Cr-rich α′ phase were identified in the steel. A unique core-shell structure with membrane-like R′ phase formed on the surface of η phase was identified however α′ phase distributed in the matrix separately. The core-shell structure enabled the maraging stainless steel a superior over-aging resistance and since aging time has reached 40 h, the characteristics of precipitations change little even aging time prolongs to 100 h. The corrosion test results indicated that the occurrence of α′ phase resulted in the formation of Cr-depleted zone and deteriorated the corrosion resistance seriously. In conclusion, the segregation behavior of alloying elements in maraging stainless steel has a significant effect on both mechanical property and corrosion resistance although some underlying mechanisms still haven't been understood well.

Key wordsmaraging stainless steel    alloying element segregation    mechanical property    corrosion resistance
收稿日期: 2016-06-14     
基金资助:* 国家自然科学基金项目51201160和中国科学院金属研究所创新基金项目2015-ZD04资助

引用本文:

田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
Jialong TIAN, Yongcan LI, Wei WANG, Wei YAN, Yiyin SHAN, Zhouhua JIANG, Ke YANG. ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL. Acta Metall Sin, 2016, 52(12): 1517-1526.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2016.00234      或      https://www.ams.org.cn/CN/Y2016/V52/I12/1517

图1  马氏体时效不锈钢深冷处理及其在500 ℃时效3 h后的TEM明场像
图2  马氏体时效不锈钢在500 ℃时效12 h后的TEM明场像、HRTEM像、η相的Fourier变换和基体的SAED花样
图3  马氏体时效不锈钢在500 ℃时效100 h后的TEM明场像和EDS分析
图4  深冷处理后合金元素的三维空间分布图
图5  马氏体时效不锈钢在500 ℃时效不同时间后的析出相形貌(30 nm×30 nm×50 nm)
Aging time / h Radius / nm Number density / m-3 Atomic fraction of Ni / %
3 2.4 1.4×1023 59.63
12 3.5 7.9×1022 63.12
20 4.8 7.3×1022 63.34
40 5.7 3.8×1022 68.86
100 5.8 4.0×1022 69.58
表1  η相在500 ℃时效过程中的演变规律
图6  马氏体时效不锈钢在500 ℃时效12 h后35%(Ni+Ti)等浓度面成分剖面图
图7  马氏体时效不锈钢时效过程中Cr原子浓度的波动
图8  深冷态和峰时效态的马氏体时效不锈钢样品盐雾腐蚀实验前后的宏观形貌
图9  深冷态和峰时效态的马氏体时效不锈钢样品盐雾腐蚀实验144 h后的SEM像
图10  深冷态和峰时效态马氏体时效不锈钢样品经盐雾腐蚀实验144 h后表面钝化(氧化)膜的XPS分析
图11  马氏体时效不锈钢500 ℃时效过程中析出相的演变规律示意图
图12  峰时效态拉伸试样断口附近和夹持端的XRD谱
[1] Ping D H, Ohnuma M, Hirakawa Y, Kadoya Y, Hono K.Mater Sci Eng, 2005; A394: 285
[2] Habibi H R.Mater Lett, 2005; 59: 1824
[3] Habibi B H, Jenkins M. Philo Mag Lett, 1996; 73: 155
[4] Jiang Y, Yin Z D, Zhu J C, Li M W.Spec Steel, 2003; 24(3): 1
[4] (姜越, 尹钟大, 朱景川, 李明伟. 特殊钢, 2003; 24(3): 1)
[5] Jiang Y, Yin Z D, Zhu J C, Li M W.Spec Steel, 2004; 25(2): 1
[5] (姜越, 尹钟大, 朱景川, 李明伟. 特殊钢, 2004; 25(2): 1)
[6] Yang Z Y, Liu Z B, Liang J X, Sun Y Q, Li W H.Trans Mater Heat Treat, 2008; 29(4): 1
[6] (杨志勇, 刘振宝, 梁剑雄, 孙永庆, 李文辉. 材料热处理学报, 2008; 29(4): 1)
[7] Martin J W, Kosa T.US Pat, 66301003B2, 2003
[8] Vartanov G. US Pat, 8361247B2, 2013
[9] Thuvander M, Andersson M, Stiller K.Ultramicroscopy, 2013; 132: 265
[10] H?ttestrand M, Nillson J O, Stiller K, Liu P, Andersson M.Acta Mater, 2004; 52: 1023
[11] Nilsson J O, Stigenberg A H, Liu P.Metall Mater Trans, 1994; 25A: 2225
[12] Li Y C, Yan W, Cotton J D, Ryan G J, Shen Y F, Wang W, Shan Y Y, Yang K.Mater Des, 2015; 82: 56
[13] Jiao Z B, Luan J H, Miller M K, Liu C T.Acta Mater, 2015; 97: 58
[14] Miller M K, Hyde J M, Hetherington M G, Cerezo A, Smith G D W, Elliott C M.Atca Metall Mater, 1995; 43: 3385
[15] Danoix F, Auger P.Mater Charact, 2000; 44: 177
[16] Hedstr?m P, Hu Y F, Zhou J, Wessman S, Thuvander M, Odqvist J.Mate Sci Eng, 2013; A574: 123
[17] Hedstr?m P, Baghsheikhi S, Liu P, Odqvist J.Mater Sci Eng, 2012; A534: 552
[18] Terentyev D, Bergner F, Osetsky Y.Acta Mater, 2013; 61: 1444
[19] Kim J K, Lee B J, Lee B H, Kim Y H, Kim K Y.Scr Mater, 2009; 61: 1133
[20] Kim J K, Lee B J, Kim Y H, Kim K Y.Scr Mater, 2010; 63: 449
[21] Miller M, Kenik E.Microsc Microanal, 2004; 10: 336
[22] Hellman O C, du Rivage J B, Seidman D N.Ultramicroscopy, 2003; 95: 199
[23] Yoon K E, Noebe R D, Hellman O C, Seidman D D N.Surf Interface Anal, 2004; 36: 594
[24] Schnitzer R, Radis R, N?hrer M.Mater Chem Phys, 2010; 122: 138
[25] Xie Z J, Ren Y Q, Zhou W H.Mater Sci Eng, 2014; A603: 69
[26] Danoix F, Auger P.Mater Charact, 2000; 44: 177
[27] Brenner S S, Miller M M, Soffa W A.Scr Metall, 1982; 16: 831
[28] Brenner S S, Camus P P, Miller K K, Soffa W A.Acta Metall, 1984; 32: 1217
[29] Brown J E, Smith G D W.Surf Sci, 1991; 246: 285
[30] Zhu F, Haasen P, Wagner R.Acta Metall, 1986; 34: 457
[31] Miller M K, Russell K F. Appl Surf Sci#/magtechI#, 1996; 94/95: 398
[32] Stiller K, Hattestrand M, Danoix F.Acta Mater, 1998; 46: 6063
[33] Tian J L, Wang W, Yin L C, Yan W, Shan Y Y, Yang K.Scr Mater, 2016; 121: 37.
[34] H?ttestrand M, Nilsson J O, Stiller K.Acta Mater, 2004; 52: 1023
[35] Andersson M, Stiller K, H?ttestrand M.Surf Interface Anal, 2007; 39: 195
[36] Song Y, Li X, Rong L, Li Y.Mater Sci Eng, 2011; A528: 4075
[37] Ha K F, Zhang H M, Jing K L.Metall Trans, 1989; 20A: 2563
[1] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[2] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[12] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[13] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[14] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[15] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.