Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1517-1526    DOI: 10.11900/0412.1961.2016.00234
  本期目录 | 过刊浏览 |
多相强化型马氏体时效不锈钢中的合金元素偏聚效应*
田家龙1,2,李永灿3,王威1(),严伟1,单以银1,姜周华2,杨柯1
1 中国科学院金属研究所, 沈阳 110016
2 东北大学材料与冶金学院, 沈阳 110819
3 南京航空航天大学材料科学与技术学院, 南京 210016
ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL
Jialong TIAN1,2,Yongcan LI3,Wei WANG1(),Wei YAN1,Yiyin SHAN1,Zhouhua JIANG2,Ke YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819, China
3 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
Jialong TIAN, Yongcan LI, Wei WANG, Wei YAN, Yiyin SHAN, Zhouhua JIANG, Ke YANG. ALLOYING ELEMENT SEGREGATION EFFECT IN A MULTI-PHASE STRENGTHENED MARAGING STAINLESS STEEL[J]. Acta Metall Sin, 2016, 52(12): 1517-1526.

全文: PDF(8366 KB)   HTML
  
摘要: 

采用高分辨透射电镜(HRTEM)和原子探针层析技术(APT)等分析手段研究了一种多相强化型马氏体时效不锈钢时效过程中的元素偏聚特征及其与材料力学和耐蚀性能的关系. 结果表明, 马氏体时效不锈钢在时效过程中析出3种强化相: 富Mo的R′相、Ni3Ti金属间化合物η相和富Cr的α′相. 其中R′相与η相一起形成核壳状结构, α′相则单独弥散分布于基体中. 时效时间延长至40 h后, 主要强化相η相的成分、数量密度和等效半径基本稳定, 同时马氏体时效不锈钢的强度不再发生明显的变化, 这种优异的抗过时效能力是由于核壳状结构的形成. 腐蚀实验结果表明, 由于富Cr的α′相的析出, 导致贫Cr区的形成, 进而降低了马氏体时效不锈钢的耐蚀性能.

关键词 马氏体时效不锈钢,合金元素偏聚,力学性能,耐蚀性能    
Abstract

Maraging stainless steels are the most widely used high strength stainless steels because of their excellent combination of high strength, superior corrosion resistance and good weldability. The typical heat treatment of maraging stainless steel consists of solution treatment and the following aging treatment. Aging treatment is the important process since it affects the steel's final properties and then determines its application prospect. Thus, understanding well the segregation behavior of alloying elements during the aging treatment plays a key role in developing the new maraging stainless steel with superior properties. In this work, segregation of alloying elements as well as its effect on mechanical properties and corrosion resistance of a multi-phase strengthened maraging stainless steel was studied by HRTEM and APT analyses. It was found that three precipitating species including Mo-rich R′ phase, η phase and Cr-rich α′ phase were identified in the steel. A unique core-shell structure with membrane-like R′ phase formed on the surface of η phase was identified however α′ phase distributed in the matrix separately. The core-shell structure enabled the maraging stainless steel a superior over-aging resistance and since aging time has reached 40 h, the characteristics of precipitations change little even aging time prolongs to 100 h. The corrosion test results indicated that the occurrence of α′ phase resulted in the formation of Cr-depleted zone and deteriorated the corrosion resistance seriously. In conclusion, the segregation behavior of alloying elements in maraging stainless steel has a significant effect on both mechanical property and corrosion resistance although some underlying mechanisms still haven't been understood well.

Key wordsmaraging stainless steel    alloying element segregation    mechanical property    corrosion resistance
收稿日期: 2016-06-14     
基金资助:* 国家自然科学基金项目51201160和中国科学院金属研究所创新基金项目2015-ZD04资助
图1  马氏体时效不锈钢深冷处理及其在500 ℃时效3 h后的TEM明场像
图2  马氏体时效不锈钢在500 ℃时效12 h后的TEM明场像、HRTEM像、η相的Fourier变换和基体的SAED花样
图3  马氏体时效不锈钢在500 ℃时效100 h后的TEM明场像和EDS分析
图4  深冷处理后合金元素的三维空间分布图
图5  马氏体时效不锈钢在500 ℃时效不同时间后的析出相形貌(30 nm×30 nm×50 nm)
Aging time / h Radius / nm Number density / m-3 Atomic fraction of Ni / %
3 2.4 1.4×1023 59.63
12 3.5 7.9×1022 63.12
20 4.8 7.3×1022 63.34
40 5.7 3.8×1022 68.86
100 5.8 4.0×1022 69.58
表1  η相在500 ℃时效过程中的演变规律
图6  马氏体时效不锈钢在500 ℃时效12 h后35%(Ni+Ti)等浓度面成分剖面图
图7  马氏体时效不锈钢时效过程中Cr原子浓度的波动
图8  深冷态和峰时效态的马氏体时效不锈钢样品盐雾腐蚀实验前后的宏观形貌
图9  深冷态和峰时效态的马氏体时效不锈钢样品盐雾腐蚀实验144 h后的SEM像
图10  深冷态和峰时效态马氏体时效不锈钢样品经盐雾腐蚀实验144 h后表面钝化(氧化)膜的XPS分析
图11  马氏体时效不锈钢500 ℃时效过程中析出相的演变规律示意图
图12  峰时效态拉伸试样断口附近和夹持端的XRD谱
[1] Ping D H, Ohnuma M, Hirakawa Y, Kadoya Y, Hono K.Mater Sci Eng, 2005; A394: 285
[2] Habibi H R.Mater Lett, 2005; 59: 1824
[3] Habibi B H, Jenkins M. Philo Mag Lett, 1996; 73: 155
[4] Jiang Y, Yin Z D, Zhu J C, Li M W.Spec Steel, 2003; 24(3): 1
[4] (姜越, 尹钟大, 朱景川, 李明伟. 特殊钢, 2003; 24(3): 1)
[5] Jiang Y, Yin Z D, Zhu J C, Li M W.Spec Steel, 2004; 25(2): 1
[5] (姜越, 尹钟大, 朱景川, 李明伟. 特殊钢, 2004; 25(2): 1)
[6] Yang Z Y, Liu Z B, Liang J X, Sun Y Q, Li W H.Trans Mater Heat Treat, 2008; 29(4): 1
[6] (杨志勇, 刘振宝, 梁剑雄, 孙永庆, 李文辉. 材料热处理学报, 2008; 29(4): 1)
[7] Martin J W, Kosa T.US Pat, 66301003B2, 2003
[8] Vartanov G. US Pat, 8361247B2, 2013
[9] Thuvander M, Andersson M, Stiller K.Ultramicroscopy, 2013; 132: 265
[10] H?ttestrand M, Nillson J O, Stiller K, Liu P, Andersson M.Acta Mater, 2004; 52: 1023
[11] Nilsson J O, Stigenberg A H, Liu P.Metall Mater Trans, 1994; 25A: 2225
[12] Li Y C, Yan W, Cotton J D, Ryan G J, Shen Y F, Wang W, Shan Y Y, Yang K.Mater Des, 2015; 82: 56
[13] Jiao Z B, Luan J H, Miller M K, Liu C T.Acta Mater, 2015; 97: 58
[14] Miller M K, Hyde J M, Hetherington M G, Cerezo A, Smith G D W, Elliott C M.Atca Metall Mater, 1995; 43: 3385
[15] Danoix F, Auger P.Mater Charact, 2000; 44: 177
[16] Hedstr?m P, Hu Y F, Zhou J, Wessman S, Thuvander M, Odqvist J.Mate Sci Eng, 2013; A574: 123
[17] Hedstr?m P, Baghsheikhi S, Liu P, Odqvist J.Mater Sci Eng, 2012; A534: 552
[18] Terentyev D, Bergner F, Osetsky Y.Acta Mater, 2013; 61: 1444
[19] Kim J K, Lee B J, Lee B H, Kim Y H, Kim K Y.Scr Mater, 2009; 61: 1133
[20] Kim J K, Lee B J, Kim Y H, Kim K Y.Scr Mater, 2010; 63: 449
[21] Miller M, Kenik E.Microsc Microanal, 2004; 10: 336
[22] Hellman O C, du Rivage J B, Seidman D N.Ultramicroscopy, 2003; 95: 199
[23] Yoon K E, Noebe R D, Hellman O C, Seidman D D N.Surf Interface Anal, 2004; 36: 594
[24] Schnitzer R, Radis R, N?hrer M.Mater Chem Phys, 2010; 122: 138
[25] Xie Z J, Ren Y Q, Zhou W H.Mater Sci Eng, 2014; A603: 69
[26] Danoix F, Auger P.Mater Charact, 2000; 44: 177
[27] Brenner S S, Miller M M, Soffa W A.Scr Metall, 1982; 16: 831
[28] Brenner S S, Camus P P, Miller K K, Soffa W A.Acta Metall, 1984; 32: 1217
[29] Brown J E, Smith G D W.Surf Sci, 1991; 246: 285
[30] Zhu F, Haasen P, Wagner R.Acta Metall, 1986; 34: 457
[31] Miller M K, Russell K F. Appl Surf Sci#/magtechI#, 1996; 94/95: 398
[32] Stiller K, Hattestrand M, Danoix F.Acta Mater, 1998; 46: 6063
[33] Tian J L, Wang W, Yin L C, Yan W, Shan Y Y, Yang K.Scr Mater, 2016; 121: 37.
[34] H?ttestrand M, Nilsson J O, Stiller K.Acta Mater, 2004; 52: 1023
[35] Andersson M, Stiller K, H?ttestrand M.Surf Interface Anal, 2007; 39: 195
[36] Song Y, Li X, Rong L, Li Y.Mater Sci Eng, 2011; A528: 4075
[37] Ha K F, Zhang H M, Jing K L.Metall Trans, 1989; 20A: 2563
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.