Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1527-1535    DOI: 10.11900/0412.1961.2016.00044
  本期目录 | 过刊浏览 |
冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*
尹炎祺,伍翠兰(),谢盼,朱恺,田松栗,韩梅,陈江华
湖南大学材料科学与工程学院, 长沙 410082
AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING
Yanqi YIN,Cuilan WU,Pan XIE,Kai ZHU,Songli TIAN,Mei HAN,Jianghua CHEN
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
引用本文:

尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
Yanqi YIN, Cuilan WU, Pan XIE, Kai ZHU, Songli TIAN, Mei HAN, Jianghua CHEN. AN ULTRAFINE GRAINED DUPLEX Mn12Ni2MoTi(Al) STEEL FABRICATED BY COLD ROLLINGAND ANNEALING[J]. Acta Metall Sin, 2016, 52(12): 1527-1535.

全文: PDF(6019 KB)   HTML
  
摘要: 

采用XRD, SEM, TEM, 硬度测试和拉伸实验研究了冷轧Mn12Ni2MoTi(Al)钢经不同工艺退火后的显微组织及力学性能. 结果表明, 马氏体Mn12Ni2MoTi(Al)钢经65%冷轧及710~745 ℃退火处理后转变成主要由奥氏体晶粒和铁素体晶粒组成的亚微米级超细晶粒双相组织, 并且弥散分布着第二相析出物颗粒; 在退火中形成的富Ti, Mo及Si的第二相颗粒阻碍了超细再结晶晶粒的粗化, 从而提高了钢的屈服强度和热稳定性; 经710 ℃, 24 h长时间退火后, 超细晶粒双相钢的平均晶粒尺寸仍然小于500 nm; 超细晶粒双相钢延伸率随室温奥氏体体积分数增加而增加, 室温奥氏体体积分数随退火温度升高或退火时间延长先增加后降低, 且在745 ℃, 0.5 h退火时达到最大值. 超细晶粒钢的屈服强度和总延伸率可达到900 MPa和23%以上, 比同种材料淬火马氏体钢提高了约一倍.

关键词 超细晶粒双相钢,第二相强化,相变诱发塑性(TRIP)效应,形变热处理,力学性能    
Abstract

For decades, transformation induced plasticity (TRIP) assisted steels with high tensile strength and exceptional ductility at room temperature have attracted a great deal of attentions. Their applications are often limited due to the low yield strength. In this work, an ultrafine grained (UFG) duplex Mn12Ni2MoTi(Al) TRIP steel with high yield strength and good ductility is fabricated by cold rolling and subsequent annealing at 710~745 ℃. The microstructure and mechanical properties of the steels with different heat treatment conditions are investigated by means of XRD, SEM, TEM, hardness and tensile tests. It is found that after annealing at 710~745 ℃, the deformation microstructure of the cold-rolled samples has transformed into a sub-micron UFG duplex microstructure consisting of austenite, ferrite and dispersed second-phase precipitations. The second-phase precipitations formed during annealing are rich in Ti, Mo and Si, and play an important role in preventing the ultrafine grains from coarsening, which results in high yield strength and good thermal stability. After annealing at 710 ℃ for 24 h, the average grain size of the UFG steel is still less than 500 nm. The elongation of the UFG duplex steel is increasing with the increment of the volume fraction of austenite in the UFG duplex steel at room temperature. The volume fraction of austenite in the UFG duplex steel at room temperature first increases and then decreases with the annealing temperature and time increasing, and reaches the maximum value when annealing at 745 ℃ for 0.5 h. The yield strength and total elongation of the UFG steel can be as large as 900 MPa and 23%, respectively, which are about double those of the quenched martensitic sample.

Key wordsultrafine    grained    duplex    steel,    second    phase    strengthening,    TRIP    effect,    thermomechanical    process,    mechanical    property
收稿日期: 2016-01-26     
基金资助:* 国家自然科学基金项目11427806和51371081资助
图1  不同热处理工艺试样的XRD谱
图2  不同热处理工艺试样中奥氏体的相对体积分数
图3  710 ℃不同退火时间试样的XRD谱和奥氏体的相对体积分数
图4  不同热处理工艺试样显微组织的SEM像
图5  不同热处理工艺试样显微组织的TEM像
图6  试样晶粒尺寸分布频率统计图
图7  710 ℃, 1 h试样的HAADF像及方框区域EDS分析结果
图8  不同温度退火1 h试样Vickers硬度随退火温度的变化曲线
图9  冷轧和不同温度退火1 h试样的拉伸性能
图10  710~745 ℃短时退火试样的拉伸应力-应变曲线
[1] Huang B X. PhD Dissertation, Shanghai Jiao Tong University, 2007
[1] (黄宝旭. 上海交通大学博士学位论文, 2007)
[2] Frommeyer G, Brüx U, Neumann P.ISIJ Int, 2003; 43: 438
[3] Wu C L, Long C X, Wang S B.J Hunan Univ (Nat Sci), 2012; 39(7): 70
[3] (伍翠兰, 龙彩霞, 王双宝. 湖南大学学报(自然科学版), 2012; 39(7): 70)
[4] Tsuji N, Ueji R, Minamino Y, Saito Y.Scr Mater, 2002; 46: 305
[5] Rezaee A, Kermanpur A, Najafizadeh A, Moallemi M.Mater Sci Eng, 2011; A528: 5025
[6] Forouzan F, Najafizadeh A, Kermanpur A, Hedayati A, Surkialiabad R.Mater Sci Eng, 2010; A527: 7334
[7] Eskandari M, Kermanpur A, Najafizadeh A.Metall Mater Trans, 2009; 40A: 2241
[8] Rajasekhara S, Ferreira P J, Karjalainen L P, Kyrōlāinen A. Metall Mater Trans, 2007; 38A: 1202
[9] Ma Y Q, Jin J E, Lee Y K.Scr Mater, 2005; 52: 1311
[10] Song R, Ponge D, Raabe D, Speer J G, Matlock D K.Mater Sci Eng, 2006; A441: 1
[11] Ueji R, Tsuji N, Minamino Y, Koizumi Y.Sci Technol Adv Mater, 2004; 5: 153
[12] Wei Y J, Li Y Q, Zhu L C, Liu Y, Lei X Q, Wang G, Wu Y X, Mi Z L, Liu J B, Wang H T, Gao H J.Nat Commun, 2014; 5: 3580
[13] Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi S M.Mater Lett, 2010; 64: 15
[14] Song R, Ponge D, Raabe D.Scr Mater, 2005; 52: 1075
[15] Kang S, Jung Y S, Jun J H, Lee Y K.Mater Sci Eng, 2010; A527: 745
[16] Ivanisenko Y, Wunderlich R K, Valiev R Z, Fecht H J.Scr Mater, 2003; 49: 947
[17] Fukuda Y, Oh-ishi K, Horita Z, Langdon T G.Acta Mater, 2002; 50: 1359
[18] Tsuji N, Ito Y, Saito Y, Minamino Y.Scr Mater, 2002; 47: 893
[19] Misra R D K, Ravi Kumar B, Somani M, Karjalainen P.Scr Mater, 2008; 59: 79
[20] Ueji R, Tsuji N, Minamino Y, Koizumi Y.Acta Mater, 2002; 50: 4177
[21] Eskandari M, Najafizadeh A, Kermanpur A.Mater Sci Eng, 2009; A519: 46
[22] Santos D B, Saleh A A, Gazder A A, Carman A, Duarte D M, Ribeiro E A S, Gonzalez B M, Pereloma E V.Mater Sci Eng, 2011; A528: 3545
[23] Torabinejad V, Zarei-Hanzaki A, Sabet M, Abedi H R.Mater Des, 2011; 32: 2345
[24] Mi Z L, Tang D, Jiang H T, Dai Y J, Li S S.Int J Min Met Mater, 2009; 16A: 154
[25] Luo H W, Shi J, Wang C, Cao W Q, Sun X J, Dong H.Acta Mater, 2011; 59: 4002
[26] Raabe D, Ponge D, Dmitrieva O, Sander B.Scr Mater, 2009; 60: 1141
[27] Raabe D, Ponge D, Dmitrieva O, Sander B.Adv Eng Mater, 2009; 11: 547
[28] Millán J, Sandl?bes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Ponge D, Raabe D.Acta Mater, 2014; 76: 94
[29] Ponge D, Millán J, Raabe D.Advanced Steels. Berlin: Springer, 2011: 199
[30] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[31] Chen Y, Wu C L, Xie P, Chen W L, Xiao H, Chen J H.Acta Metall Sin, 2014; 50: 423
[31] (陈燕, 伍翠兰, 谢盼, 陈汪林, 肖辉, 陈江华. 金属学报, 2014; 50: 423)
[32] De Moor E, Matlock D K, Speer J G, Merwin M J.Scr Mater, 2011; 64: 185
[33] Lee S, Lee S J, De Cooman B C.Scr Mater, 2011; 65: 225
[34] Takaki S, Fukunaga K, Syarif J, Tsuchiyama T. Mater Trans, 2004; 45: 2245
[35] Shi D K, Zhu W D. Material Physics.Xi'an: China Machine Press, 2006: 227
[35] (石德珂, 朱维斗. 材料物理. 西安:机械工业出版社, 2006: 227)
[36] Feng Y. Metal Material Science.Beijing: National Defense Industry Press, 2008: 11
[36] (凤仪. 金属材料学. 北京: 国防工业出版社, 2008: 11)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.