Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 987-999    DOI: 10.11900/0412.1961.2015.00549
  论文 本期目录 | 过刊浏览 |
Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*
陈瑞,许庆彦(),柳百成
清华大学材料科学与工程学院先进成形制造教育部重点实验, 北京 100084
MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS
Rui CHEN,Qingyan XU(),Baicheng LIU
Key Laboratory for Advanced Materials Processing Technology (MOE, School of Materials Science and Engineerin, Tsinghua Universit, Beijing 10008, China
全文: PDF(961 KB)   HTML
摘要: 

通过与计算相图数据库相耦, 建立了Al-Mg-Si三元合金体系中针棒状析出相时效析出动力学和时效强化模, 考虑了析出相形貌对形核、生长、粗化以及强化效果的影响. 通过该模型可以获得不同时效工艺下析出相微观组织特征参数的变化及对应的屈服强度变化. 利用该模型模拟了Al-Mg-Si合金在不同时效工艺条件下的时效析出过程和屈服强度变, 并与实验结果及Lifshitz-Slyozov-Wanger粗化模型计算结果进行了对比. 基于模型研究并分析了析出相长径比、界面能、合金元素含量以及析出相成分对Al-Mg-Si合金时效析出动力学和强化效果的影响. 结果表明: 不同的界面能和长径比会影响形核密度和析出相尺, 进而影响合金的屈服强度. 增加基体中Mg含量可以促进时效析, 提高合金屈服强, 而基体中Si含量的增加对合金屈服强度并不产生明显影响.

关键词 Al-Mg-Si合金析出动力学屈服强度针棒状析出相时效    
Abstract

The aging hardening is the main strengthening mechanism of Al-Mg-Si alloy, and the hardening effect is determined by the microstructural features of precipitates including the morpholog, compositio, volume factio, nucleation density as well as the size distribution. In present wor, an integrated mathematical model coupling with the CALPHAD software is developed to simulate the precipitation kinetics and strengthening effects of needle/rod-shaped precipitates in ternary Al-Mg-Si aluminum alloys. This model takes into account the effects of morphology on the nucleatio, growth and coarsening of precipitates and on the strengthening effects. The yield strength model accounts for the whole precipitate size distributio, shape of precipitates and their specific spatial distribution based on the consideration of the competing shearing and bypassing strengthening mechanisms. Appli cation of the model to various aging treatments of Al-Mg-Si alloys is conducted and the predictions both for microstructural features and yield strength are validated with experimental results and the predictions by LSW model. Using this mode, the effects of aspect rati, interfacial energ, alloy composition and Mg/Si atom ratio in precipitates on precipitation kinetics and yield strength are investigated and analyzed. The results reveal that the different interfacial energy and aspect ratio will affect the predicted density and size of precipitat, and further have an influence on the prediction precision of yield strength. An increase of Mg content in the matrix of Al-Mg-Si alloy will accelerate the precipitation and improve the yield strengt, while increasing the Si content in the matrix will produce little influence on the yield strength.

Key wordsAl-Mg-Si alloy    precipitation kinetics    yield strength    needle/rod-shaped precipitate    aging
收稿日期: 2015-10-27     
基金资助:* 国家重点基础研究发展计划项目2011CB70680, 国家自然科学基金项目51374137和51171089及国家科技重大专项项目2012ZX04012-011资助

引用本文:

陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
Rui CHEN, Qingyan XU, Baicheng LIU. MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS. Acta Metall Sin, 2016, 52(8): 987-999.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00549      或      https://www.ams.org.cn/CN/Y2016/V52/I8/987

图1  针棒状析出相形貌示意图
图2  形核过程Gibbs自由能随析出相尺寸变化示意图
图3  尺寸为rp的析出相界面前沿溶质场分布示意图
图4  位错经过析出相时相互作用和针棒状析出相在基体中的取向以及在滑移面上的位置分布示意图
Parameter Unit Value
Aspect ratio ? - 6[20]
Interface energy γ Jm-2 0.35[35]
Precipitate mean atomic volume vatβ m3 1.92×10-29[20]
Precipitate lattice parameter aβ m 2.86×10-10[20]
Atomic fraction of Mg in precipitate xMgβ % 66.7
Atomic fraction of Si in precipitate xSiβ % 33.3
Factor for adjusting the effective diffusion distance ξ - 1
Ratio of matrix to precipitate molar volumes ε - 1
Molar volume of precipitate Vm β m3mol 3.95×10-5[11]
Constant depends on the shape and nature of discolation δ - 0.5[19]
Interaction coefficient between Al and Mg LAlMg0 Jmol 4945.7-1.381T
Interaction coefficient between Mg and Si LMgSi0 Jmol -15839-12T
Interaction coefficient between Si and Al LSiAl0 Jmol -2880.2-0.09T
Shear modulus G Nm-2 2.7×1010[15]
Magnitude of the burgers vector b m 2.84×10-10[15]
Taylor factor M - 3.1[15]
Exponent for superposition law q - 2[36]
表1  Al-Mg-Si合金时效析出动力学模拟和屈服强度预测所需的参数
图5  时效温度为464 K, Al-1.12%Mg-0.57%Si合金析出相平均半径和体积分数随时效时间的变化
图6  时效温度为464 K, Al-1.12%Mg-0.57%Si合金析出相平均半径rm三次方随时效时间的变化和不同时间下的析出相尺寸分布
图7  Al-0.79%Mg-0.6%Si合金在不同时效温度下屈服强度随时间的变化
图8  时效温度为473 K, 易变形颗粒和不易变形颗粒的切应力随时效时间的变化曲线
图9  时效温度为433 K, 析出相长径比(?)对Al-0.79%Mg-0.6%Si合金时效析出相密度、半径及屈服强度的影响
图10  时效温度为433 K, 界面能(γ)对Al-0.79%Mg-0.6%Si合金时效析出相密度、半径和屈服强度的影响
图11  Al-x%Mg-0.6%Si合金在473 K下的屈服强度随时效时间的变化曲线
图12  Al-x%Mg-0.6%Si合金在473 K时析出相形核密度和析出相平均半径随时效时间的变化
图13  Al-0.6%Mg-y%Si合金在473 K时屈服强度随时效时间的变化曲线
图14  Al-0.6%Mg-1.0%Si合金在473 K下时效, 分别析出Mg2Si相和MgSi相时屈服强度的比较
[1] Murayama M, Hono K.Acta Mater, 1999; 47: 1537
[2] Maisonnette D, Suery M, Nelias D, Chaudet P, Epicier T.Mater Sci Eng, 2011; A528: 2718
[3] Zhang G J, Liu G, Ding X D, Sun J, Chen K H.Acta Metall Sin, 2003; 39: 803
[3] (张国君, 刘刚, 丁向东, 孙军, 陈康华. 金属学报, 2003; 39: 803)
[4] Wang X N, Han L Z, Gu J F.Chin J Nonferrous Met, 2013; 23: 2754
[4] (王小娜, 韩利战, 顾剑锋. 中国有色金属学报, 2013; 23: 2754 )
[5] Vaithyanathan V, Wolverton C, Chen L Q.Phys Rev Lett, 2002; 88: 148
[6] Shercliff H R, Ashby M F.Acta Metall Mater, 1990; 38: 1789
[7] Esmaeili S, Lloyd D J, Poole W J.Acta Mater, 2003; 51: 2243
[8] Yazdanmehr M, Bahrami A, Mousavi Anijdan S H.Comput Mater Sci, 2009; 45: 385
[9] Wang X N, Han L Z, Gu J F.Acta Metall Sin, 2014; 50: 355
[9] (王小娜, 韩利战, 顾剑锋. 金属学报, 2014; 50: 355 )
[10] Wagner R, Kampmann R.In: Cahn R W ed., Materials Science and Technology: a Comprehensive Treatment. Weinheim: John Wiley, 1991: 1
[11] Myhr O R, Grong ?..Acta Mater, 2000; 48: 1605
[12] Maugis P, Gouné M.Acta Mater, 2005; 53: 3359
[13] Zhang C, Cao W, Chen S L, Zhu J, Zhang F, Luo A A, Schmid-Fetzer R.JOM, 2014; 66: 389
[14] Rougier L, Jacot A, Gandin C, Napoli P D, Théry P, Ponsen D, Jaquet V.Acta Mater, 2013; 61: 6396
[15] Myhr O R, Grong ?, Andersen S J.Acta Mater, 2001; 49: 65
[16] Larráyoz lzcara X, Guirao Blank A, Pyczak F, Staron P, Schumann S, Huber N.Mater Sci Eng, 2014; A610: 46
[17] Eivani A R, Anmed H, Zhou J, Duszczyk J.Mater Sci Eng, 2010; A527: 2418
[18] Samars S N.Modell Simul Mater Sci Eng, 2006; 14: 1271
[19] Bahrami A, Miroux A, Sietsma J.Metall Mater Trans, 2012; 43A: 4445
[20] Bardel D, Perez M, Nelias D, Deschamps A, Hutchinson C R, Maisonnette D, Chaise T, Garnier J, Bourlier F.Acta Mater, 2014; 62: 129
[21] Liu G, Zhang G J, Ding X D, Sun J, Chen K H.Mater Sci Eng, 2003; A344: 113
[22] Zhang R J, He Z, Wang X Y, Jie W Q.Mater Lett, 2005; 59: 2765
[23] Du Q, Poole W J, Wells M A.Acta Mater, 2012; 60: 3830
[24] Robson J D, Jones M J, Prangnell P B.Acta Mater, 2003; 51: 1453
[25] Jiang L, Li J K, Cheng P M, Liu G, Wang R H, Chen B A, Zhang J Y, Sun J, Yang M X, Yang G.Mater Sci Eng, 2014; A607: 596
[26] Hillert M. Phase Equilibria Phase Diagrams and Phase Transformations: Their Thermodynamic Basis. 2nd Ed., Cambridge: Cambridge University Press, 2008: 1
[27] Perez M, Dumont M, Acevedo-Reyes D.Acta Mater, 2009; 57: 1318
[28] Chen Q, Jeppsson J, ?gren J.Acta Mater, 2008; 56: 1890
[29] Zhang J, Deng Y L, Zhang X M.Mater Sci Eng, 2013; A563: 8
[30] Khan I N, Starink M J, Yan J L.Mater Sci Eng, 2008; A472: 66
[31] Ahmadi M R, Povoden-Karadeniz E, ?ksúz K I, Falahati A, Eozeschnik E.Comput Mater Sci, 2014; 91: 173
[32] Ardell A J.Metall Trans, 1985; 16A: 2131
[33] Leyson G P M, Hector Jr L G, Curtin W A.Acta Mater, 2012; 60: 3873
[34] Zhao Q L, Holmedal B.Mater Sci Eng, 2013; A563: 147
[35] Sj?lander E, Seifeddine S, Svensson I L.Int J Cast Met Res, 2011; 24: 338
[36] Koppenaal T J, Kuhlmann-Wilsdorf D.Appl Phys Lett, 1964; 4: 59
[37] Kuehman C J, Voorhees P W.Metall Mater Trans, 1996; 27A: 937
[38] Tiryakioglu M, ?kten G, Hudak D.J Mater Sci, 2009; 44: 5754
[39] Esmaeili S.PhD Dissertation, The University of British Columbia, Vancouver, 2003
[40] Gupta A K, Lloyd D J, Court S A.Mater Sci Eng, 2001; A316: 11
[41] Hirth S M, Marshall G J, Court S A, Lloyd D J. Mater Sci Eng, 2001; A319-321: 452
[42] Son S K, Matsumura S, Fukui K, Takeda M.J Alloys Compd, 2011; 509: 241
[43] Ji Y L, Zhong H, Hu P, Guo F.Mater Des, 2011; 32: 2974
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[3] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[4] 谭超林,周克崧,马文有,曾德长. 激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1): 36-52.
[5] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[6] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[7] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[8] 黄太文,卢晶,许瑶,王栋,张健,张家晨,张军,刘林. ReTa对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436.
[9] 石章智, 张敏, 黄雪飞, 刘雪峰, 张文征. 可时效强化Mg-Sn基合金的研究进展[J]. 金属学报, 2019, 55(10): 1231-1242.
[10] 宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
[11] 向雪梅, 赖玉香, 刘春辉, 陈江华. 微合金化元素Sn对Al-Mg-Si合金高温时效强化相析出路径的改变[J]. 金属学报, 2018, 54(9): 1273-1280.
[12] 李彦默, 刘晨曦, 余黎明, 李会军, 王祖敏, 刘永长, 李文亚. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响[J]. 金属学报, 2018, 54(7): 981-990.
[13] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[14] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[15] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.