Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 980-986    DOI: 10.11900/0412.1961.2015.00636
  论文 本期目录 | 过刊浏览 |
2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*
马颖澈(),李硕,郝宪朝,查向东,高明,刘奎
中国科学院金属研究所, 沈阳 110016
RESEARCH ON THE CARBIDE PRECIPITATION AND CHROMIUM DEPLETION IN THE GRAIN BOUNDARY OF ALLOY 690 CONTAINING DIFFERENT CONTENTS OF NITROGEN
Yingche MA(),Shuo LI,Xianchao HAO,Xiangdong ZHA,Ming GAO,Kui LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

马颖澈,李硕,郝宪朝,查向东,高明,刘奎. 2种N含量不同的690合金中晶界碳化物及晶界Cr贫化研究*[J]. 金属学报, 2016, 52(8): 980-986.
Yingche MA, Shuo LI, Xianchao HAO, Xiangdong ZHA, Ming GAO, Kui LIU. RESEARCH ON THE CARBIDE PRECIPITATION AND CHROMIUM DEPLETION IN THE GRAIN BOUNDARY OF ALLOY 690 CONTAINING DIFFERENT CONTENTS OF NITROGEN[J]. Acta Metall Sin, 2016, 52(8): 980-986.

全文: PDF(938 KB)   HTML
  
摘要: 

针对2种N含量(0.001%和0.03%, 质量分数)的690合金, 采用SEM, TEM并结合EDS分析等手段系统研究了时效处理后合金晶界碳化物和晶界附近的Cr贫化行为, 并定量描述了热处理时间对晶界附近Cr贫化程度的影响. 结果表明, 高N含量合金晶界析出的碳化物之间距离较大, 且碳化物尺寸较小, 随着时效时间延长碳化物逐渐长大. 随着时效时间的延长, 贫Cr区的Cr含量逐渐提高, 高N含量的690合金晶界附近贫Cr区的Cr含量高于低N含量合金, 主要原因是晶粒细化所致.

关键词 690合金N碳化物析出Cr贫化    
Abstract

Nickel-based alloy Inconel 690 (hereinafter called alloy 690) is currently replacing alloy 600 as steam generator tubes in pressurized water nuclear reactors, owing to its excellent resistance to intergranular stress corrosion cracking (IGSCC) and good mechanical properties. The carbide precipitation is a major microstructural characteristic during heat treatment of stainless steels and nickel-based alloys. The carbide precipitation and chromium depletion in the grain boundary of alloy 690 were investigated. The grain size and carbide of alloy 690 with 0.001% and 0.03% (mass fraction) nitrogen contents were observed and analyzed. The extent of chromium depletion in the vicinity of grain boundaries was quantitatively determined as a function of thermal treatment time. The solution treatment of the samples was at 1080 ℃ for 10 min, and then the samples were thermally treated at 715 ℃ for 1~25 h. The results show that the nitrogen addition decreases the intergranular carbide density and the average carbide length but increases its distance. The level of chromium in the depleted regions in alloy 690 with 0.03%N is higher than that with 0.001%N. This is attributed to the beneficial role of nitrogen addition against grain growth and sensitization.

Key wordsalloy 690    N    carbide precipitation    chromium depletion
收稿日期: 2015-12-09     
基金资助:* 中国科学院创新基金资助项目CXJJ-14-M44
Alloy Cr Fe C Al Ti N S Ni
10N 29.85 10.2 0.022 0.19 0.18 0.001 0.0005 Bal.
300N 29.76 10.0 0.020 0.18 0.19 0.030 0.0006 Bal.
表1  690合金的化学成分
图1  热轧态含N的690合金中碳化物形貌的SEM像
图2  10N和300N合金固溶(SA)处理后显微组织的OM像
图3  10N合金样品经SA处理和715 ℃时效(TT) 1 h后碳化物形貌的TEM像、γ相基体和碳化物电子衍射图及其标定
图4  10N合金试样经SA和TT处理不同时间后晶界碳化物(M23C6)形貌的TEM像
Alloy Treatment Average density
μm-1
Average length
μm
Average distance between 10 particles / μm
10N SA+TT, 1 h 7.9 0.082 0.043
SA+TT, 5 h 7.6 0.102 0.023
SA+TT, 15 h 3.8 0.132 0.132
SA+TT, 25 h 2.7 0.174 0.196
300N SA+TT, 1 h 6.8 0.068 0.079
SA+TT, 5 h 6.1 0.090 0.074
SA+TT, 15 h 3.0 0.108 0.223
SA+TT, 25 h 2.4 0.152 0.265
表2  析出相的定量分析
图5  300N合金样品经SA和TT处理不同时间后晶界碳化物(M23C6)形貌的TEM像
图6  10N和300N合金经SA和TT处理不同时间后晶界Cr浓度曲线
[1] Was G S..Corrosion, 1988; 46: 319
[2] Briant C L, Toole C S O, Hall E L.Corrosion, 1986; 42: 15
[3] Was G S, Tischner H H, Latanision R M.Metall Trans, 1981; 12A: 1397
[4] Yu G P, Yao H C.Corrosion, 1990; 46: 391
[5] Kai J J, Tsai C H, Huang T A, Liu M N.Metall Trans, 1989; 20A:1077
[6] Simmons J W.Mater Sci Eng, 1996; A207: 159
[7] Mozhi T A, Betrabet H S, Jagannathan V, Wilde B E, Clark W A T.Scr Metall, 1986; 20: 723
[8] Mozhi T A, Clark W A T, Nishimoto K, Johson W B, MacDonald D D.Corrosion, 1985; 41: 555
[9] Speidel M O, Pedrazzoli R M.Mater Perform, 1992; 31(9): 59
[10] Fuchs G E, Hayden S Z.Scr Mater, 1991; 25: 1483
[11] Jiang R, Chen B, Hao X C, Ma Y C, Li S, Liu K.J Mater Sci Technol, 2012; 28: 446
[12] Thuvander M, Miller M K, Stiller K.Mater Sci Eng, 1999; A270: 38
[13] Thuvander M, Stiller K, Olsson E.Mater Sci Technol, 1999; 15: 237
[14] Li S, Chen B, Ma Y C, Liu K.Acta Metall Sin, 2011; 47: 816
[14] (李硕, 陈波, 马颖澈, 刘奎. 金属学报, 2011; 47: 816)
[15] Betrabet H S, Nishimoto K, Wilde B E, Clark W A T.Corrosion, 1987; 43: 77
[16] Rios P R..Scr Mater, 1998; 39: 1725
[17] Rios P R, Fonseca G S.Scr Mater, 2004; 50: 1373
[18] Su Z Y, Liu C M.Diffusion and Phase Transformation in Alloys. Shenyang: Northeastern University Press, 2002: 39
[18] (孙振岩, 刘春明. 合金中的扩散与相变. 沈阳: 东北大学出版社, 2002: 39)
[19] Zener C.J Appl Phys, 1949; 20: 950
[20] Sahlaoui H, Sidhom H, Philibert J.Acta Mater, 2002; 50: 1383
[21] Mayo W E.Mater Sci Eng, 1997; A232: 129
[22] Sarver J M, Crum J R, Mankins W L.Corrosion NACE, 1988; 44: 288
[23] Nagano H, Yamanaka K, Kobayashi K, Inoue M.Sumitomo Search, 1989; 40: 57
[1] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[5] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[6] 王福容, 张永梅, 柏国宁, 郭庆伟, 赵宇宏. Al掺杂Mg/Mg2Sn合金界面的第一性原理计算[J]. 金属学报, 2023, 59(6): 812-820.
[7] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[8] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[9] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[10] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[11] 李斗, 徐长江, 李旭光, 李双明, 钟宏. La掺杂PCeyFe3CoSb12 热电材料及涂层的热电性能[J]. 金属学报, 2023, 59(2): 237-247.
[12] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[13] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[15] 张伟东, 崔宇, 刘莉, 王文泉, 刘叡, 李蕊, 王福会. 600℃ NaCl盐雾环境下GH4169合金的腐蚀行为[J]. 金属学报, 2023, 59(11): 1475-1486.