Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1377-1383    DOI: 10.11900/0412.1961.2015.00053
  本期目录 | 过刊浏览 |
Mo-Si-B三元系中T2相合金的制备工艺研究*
潘昆明1(),张来启2,魏世忠1,李继文1,李豪3,林均品2
2 北京科技大学新金属材料国家重点实验室, 北京 100083
3 洛阳理工学院材料科学与工程学院, 洛阳 471023
STUDY ON THE PREPARATION PROCESS OF T2 ALLOY IN THE Mo-Si-B SYSTEM
Kunming PAN1(),Laiqi ZHANG2,Shizhong WEI1,Jiwen LI1,Hao LI3,Junpin LIN2
1 Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Henan University of Science and Technology, Luoyang 471023
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
3 School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023
引用本文:

潘昆明,张来启,魏世忠,李继文,李豪,林均品. Mo-Si-B三元系中T2相合金的制备工艺研究*[J]. 金属学报, 2015, 51(11): 1377-1383.
Kunming PAN, Laiqi ZHANG, Shizhong WEI, Jiwen LI, Hao LI, Junpin LIN. STUDY ON THE PREPARATION PROCESS OF T2 ALLOY IN THE Mo-Si-B SYSTEM[J]. Acta Metall Sin, 2015, 51(11): 1377-1383.

全文: PDF(1156 KB)   HTML
摘要: 

分别通过还原气氛常压烧结法 (TFS) 和放电等离子烧结法 (SPS) 制备Mo5SiB2 (T2) 相合金, 并采用XRD, SEM和TEM等方法对合金的微观结构进行表征. 结果表明: 快的升温速率是合成T2相的动力学条件, 相比传统烧结方式, SPS法以独特的等离子活化烧结方式提供快的加热速率, 能够在较短的时间内升温到所需温度1500 ℃, 避免Mo, Si和B混合粉末在中温区间 (600~1200 ℃) 通过固-固反应生成Mo3Si, Mo5Si3和MoB等二元相, 而通过固-液反应原位合成T2相. 合金平均晶粒尺寸为1.44 mm, 晶界清晰、洁净、无过渡区且在晶体内没有观察到位错等缺陷.

关键词 Mo5SiB2 (T2)常压烧结(TFS)放电等离子烧结(SPS)微观组织    
Abstract

Mo5SiB2 (T2) can be used as a promising elevated-temperature structural material because of its high melting temperature (about 2200 ℃), and excellent resistance to oxidation and creep. The Mo5SiB2 (T2) alloy was prepared by both spark plasma sintering (SPS) and tube furnace sintering (TFS), and then the microstructures were characterized by XRD, SEM-EDS and TEM. The results show that the rapid heating rate is one of important dynamic conditions responsible for the synthesis of T2. Compared with traditional methods, SPS can provide the fast synthesis in a particular way of labilized plasma sintering so that the sample can be heated to the expected temperature of 1500 ℃ with a short period. The melted Si can rapidly react with Mo and B to synthesize T2 in the solid-liquid state prior to the formation of binary phases (Mo3Si, Mo5Si3, MoB, etc.) in the solid state in the range of 600~1200 ℃. The average size of grains is equal to 1.44 μm. The boundaries are clear and have the shape of a straight line without transition zones. Moreover, no defects such as dislocations were found in the T2 alloys prepared by SPS.

Key wordsMo5SiB2 (T2)    tube furnace sintering (TFS)    spark plasma sintering (SPS)    microstructure
    
基金资助:*国家自然科学基金项目50871012 和U1504514, 长江学者和创新团队发展计划项目IRT1234, 及河南省科技攻关项目20140401 资助
图1  Mo-12.5Si-25B粉末经常压烧结(TFS)法不同温度烧结1 h的XRD谱
图2  Mo-12.5Si-25B粉末经TFS法不同温度烧结2 h的XRD谱
图3  TFS法制备出试样的相对密度
图4  Mo-12.5Si-25B粉末经TFS法分别在1450和1500 ℃烧结1 h后的SEM像
图5  试样用放电等离子烧结(SPS)法以不同升温速率在1500 ℃烧结后的XRD谱
图6  SPS法制备试样的相对密度
图7  试样经SPS法以200 ℃/min速率升温到不同温度烧结后的XRD谱
图8  试样经SPS法以200 ℃/min速率升温到1600 ℃烧结后的SEM像
图9  试样经SPS法以200 ℃/min速率升温到1500 ℃烧结后的SEM像、经草酸侵蚀后的晶粒OM像及粒度分布
图10  试样经SPS法以200 ℃/min速率升温到1500 ℃烧结的TEM明场像及SAED谱
图11  Mo-12.5Si-25B粉末加热过程中的DSC曲线及不同温度XRD谱
图12  试样随SPS法烧结温度变化的收缩率曲线
[1] Depka T, Somsen C, Eggeler G, Mukherji D, R?sler J, Krüger M, Saage H, Heilmaier M. Mater Sci Eng, 2009; A510-511: 337
[2] Sakidja R, Perepezko J H, Kim S. Acta Mater, 2008; 56: 5223
[3] Zhang F, Zhang L, Shan A, Wu J. Intermetallics, 2006; 14: 406
[4] Mandal P, Thom A J, Kramer M J. Mater Sci Eng, 2004; A371: 335
[5] Meyer M K, Kramer M J, Akinca M. Intermetallics, 1996; 4: 273
[6] Nunes C A, Sakidja R, Dong Z. Intermetallics, 2000; 8: 327
[7] Pan K M, Liu W, Zhang L Q, Wei S Z, You L, Lin J P, Li J W, Xu L J, Zhou S Z, Han M R. Mater Sci Eng, 2015; A623: 124
[8] Zhang L Q, Pan K M, Du W, Wang M, Lin J P, Ni X D, Shang H K, Sun J H. Intermetallics, 2014; 50: 79
[9] Pan K M, Zhang L Q, Wang J, Du W, Lin J P. Acta Metall Sin, 2013; 49: 1392 (潘昆明, 张来启, 王 珏, 杜 伟, 林均品. 金属学报, 2013; 49: 1392
[10] Zhang L Q, Pan K M, Lin J P. Intermetallics, 2013; 38: 49
[11] Rawn C J, Schneibel J H, Hoffmann C M. Intermetallics, 2001; 9: 209
[12] Yamauchi A, Yoshimi K, Kurokawa K. J Alloys Compd, 2007; 434-435: 420
[13] Abbasi A R, Shamanian M. Mater Sci Eng, 2011; A528: 3295
[14] Urquhart A W. Mater Sci Eng, 1991; A144: 75
[15] Wan D T, Zhou Y C, Bao Y W. Ceram Int, 2006; 32: 883
[16] Pan K M, Zhang L Q, Wang J, Lin J P, Chen G L. Surf Interface Anal, 2013; 45: 955
[17] Nesmeianov A N. Vapor Pressure of the Chemical Elements. Amsterdam: Elsevier Pub. Co., 1963: 85
[18] Mandal P, Thom A J, Kramer M J. Mater Sci Eng, 2004; A371: 335
[19] Deevi S C, Thadhani N N. Mater Sci Eng, 1995; A192-193: 604
[20] Shen Z, Johnsson M, Zhao Z. J Am Ceram Soc, 2002; 85: 1921
[21] Ls D, Gurry R W. Physical Chemistry of Metals. Tokyo: McGraw-Hill Book Company and Kogakusha Company Ltd., 1993: 126
[22] Zhang L Q, Huang L. J Univ Sci Technol Beijing, 2008; 30: 281 (张来启, 黄 蕾, 北京科技大学学报, 2008; 30: 281)
[23] Yoon J, Lee J, Lee K. Intermetallics, 2003; 11: 687
[24] Rosales I, Schneibel J H. Intermetallics, 2000; 8: 885
[25] Str?m E. Mater Charact, 2005; 55: 402
[26] Huebsch J. Intermetallics, 2000; 8: 143
[27] Hayashi T, Ito K, Numakura H. Intermetallics, 2005; 13: 93
[28] Wang S W, Chen L D, Hirai T. J Mater Res, 2000; 15: 982
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.