Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1377-1383    DOI: 10.11900/0412.1961.2015.00053
  本期目录 | 过刊浏览 |
Mo-Si-B三元系中T2相合金的制备工艺研究*
潘昆明1(),张来启2,魏世忠1,李继文1,李豪3,林均品2
2 北京科技大学新金属材料国家重点实验室, 北京 100083
3 洛阳理工学院材料科学与工程学院, 洛阳 471023
STUDY ON THE PREPARATION PROCESS OF T2 ALLOY IN THE Mo-Si-B SYSTEM
Kunming PAN1(),Laiqi ZHANG2,Shizhong WEI1,Jiwen LI1,Hao LI3,Junpin LIN2
1 Engineering Research Center of Tribology and Materials Protection, Ministry of Education, Henan University of Science and Technology, Luoyang 471023
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
3 School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023
全文: PDF(1156 KB)   HTML
摘要: 

分别通过还原气氛常压烧结法 (TFS) 和放电等离子烧结法 (SPS) 制备Mo5SiB2 (T2) 相合金, 并采用XRD, SEM和TEM等方法对合金的微观结构进行表征. 结果表明: 快的升温速率是合成T2相的动力学条件, 相比传统烧结方式, SPS法以独特的等离子活化烧结方式提供快的加热速率, 能够在较短的时间内升温到所需温度1500 ℃, 避免Mo, Si和B混合粉末在中温区间 (600~1200 ℃) 通过固-固反应生成Mo3Si, Mo5Si3和MoB等二元相, 而通过固-液反应原位合成T2相. 合金平均晶粒尺寸为1.44 mm, 晶界清晰、洁净、无过渡区且在晶体内没有观察到位错等缺陷.

关键词 Mo5SiB2 (T2)常压烧结(TFS)放电等离子烧结(SPS)微观组织    
Abstract

Mo5SiB2 (T2) can be used as a promising elevated-temperature structural material because of its high melting temperature (about 2200 ℃), and excellent resistance to oxidation and creep. The Mo5SiB2 (T2) alloy was prepared by both spark plasma sintering (SPS) and tube furnace sintering (TFS), and then the microstructures were characterized by XRD, SEM-EDS and TEM. The results show that the rapid heating rate is one of important dynamic conditions responsible for the synthesis of T2. Compared with traditional methods, SPS can provide the fast synthesis in a particular way of labilized plasma sintering so that the sample can be heated to the expected temperature of 1500 ℃ with a short period. The melted Si can rapidly react with Mo and B to synthesize T2 in the solid-liquid state prior to the formation of binary phases (Mo3Si, Mo5Si3, MoB, etc.) in the solid state in the range of 600~1200 ℃. The average size of grains is equal to 1.44 μm. The boundaries are clear and have the shape of a straight line without transition zones. Moreover, no defects such as dislocations were found in the T2 alloys prepared by SPS.

Key wordsMo5SiB2 (T2)    tube furnace sintering (TFS)    spark plasma sintering (SPS)    microstructure
    
基金资助:*国家自然科学基金项目50871012 和U1504514, 长江学者和创新团队发展计划项目IRT1234, 及河南省科技攻关项目20140401 资助

引用本文:

潘昆明,张来启,魏世忠,李继文,李豪,林均品. Mo-Si-B三元系中T2相合金的制备工艺研究*[J]. 金属学报, 2015, 51(11): 1377-1383.
Kunming PAN, Laiqi ZHANG, Shizhong WEI, Jiwen LI, Hao LI, Junpin LIN. STUDY ON THE PREPARATION PROCESS OF T2 ALLOY IN THE Mo-Si-B SYSTEM. Acta Metall Sin, 2015, 51(11): 1377-1383.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00053      或      https://www.ams.org.cn/CN/Y2015/V51/I11/1377

图1  Mo-12.5Si-25B粉末经常压烧结(TFS)法不同温度烧结1 h的XRD谱
图2  Mo-12.5Si-25B粉末经TFS法不同温度烧结2 h的XRD谱
图3  TFS法制备出试样的相对密度
图4  Mo-12.5Si-25B粉末经TFS法分别在1450和1500 ℃烧结1 h后的SEM像
图5  试样用放电等离子烧结(SPS)法以不同升温速率在1500 ℃烧结后的XRD谱
图6  SPS法制备试样的相对密度
图7  试样经SPS法以200 ℃/min速率升温到不同温度烧结后的XRD谱
图8  试样经SPS法以200 ℃/min速率升温到1600 ℃烧结后的SEM像
图9  试样经SPS法以200 ℃/min速率升温到1500 ℃烧结后的SEM像、经草酸侵蚀后的晶粒OM像及粒度分布
图10  试样经SPS法以200 ℃/min速率升温到1500 ℃烧结的TEM明场像及SAED谱
图11  Mo-12.5Si-25B粉末加热过程中的DSC曲线及不同温度XRD谱
图12  试样随SPS法烧结温度变化的收缩率曲线
[1] Depka T, Somsen C, Eggeler G, Mukherji D, R?sler J, Krüger M, Saage H, Heilmaier M. Mater Sci Eng, 2009; A510-511: 337
[2] Sakidja R, Perepezko J H, Kim S. Acta Mater, 2008; 56: 5223
[3] Zhang F, Zhang L, Shan A, Wu J. Intermetallics, 2006; 14: 406
[4] Mandal P, Thom A J, Kramer M J. Mater Sci Eng, 2004; A371: 335
[5] Meyer M K, Kramer M J, Akinca M. Intermetallics, 1996; 4: 273
[6] Nunes C A, Sakidja R, Dong Z. Intermetallics, 2000; 8: 327
[7] Pan K M, Liu W, Zhang L Q, Wei S Z, You L, Lin J P, Li J W, Xu L J, Zhou S Z, Han M R. Mater Sci Eng, 2015; A623: 124
[8] Zhang L Q, Pan K M, Du W, Wang M, Lin J P, Ni X D, Shang H K, Sun J H. Intermetallics, 2014; 50: 79
[9] Pan K M, Zhang L Q, Wang J, Du W, Lin J P. Acta Metall Sin, 2013; 49: 1392 (潘昆明, 张来启, 王 珏, 杜 伟, 林均品. 金属学报, 2013; 49: 1392
[10] Zhang L Q, Pan K M, Lin J P. Intermetallics, 2013; 38: 49
[11] Rawn C J, Schneibel J H, Hoffmann C M. Intermetallics, 2001; 9: 209
[12] Yamauchi A, Yoshimi K, Kurokawa K. J Alloys Compd, 2007; 434-435: 420
[13] Abbasi A R, Shamanian M. Mater Sci Eng, 2011; A528: 3295
[14] Urquhart A W. Mater Sci Eng, 1991; A144: 75
[15] Wan D T, Zhou Y C, Bao Y W. Ceram Int, 2006; 32: 883
[16] Pan K M, Zhang L Q, Wang J, Lin J P, Chen G L. Surf Interface Anal, 2013; 45: 955
[17] Nesmeianov A N. Vapor Pressure of the Chemical Elements. Amsterdam: Elsevier Pub. Co., 1963: 85
[18] Mandal P, Thom A J, Kramer M J. Mater Sci Eng, 2004; A371: 335
[19] Deevi S C, Thadhani N N. Mater Sci Eng, 1995; A192-193: 604
[20] Shen Z, Johnsson M, Zhao Z. J Am Ceram Soc, 2002; 85: 1921
[21] Ls D, Gurry R W. Physical Chemistry of Metals. Tokyo: McGraw-Hill Book Company and Kogakusha Company Ltd., 1993: 126
[22] Zhang L Q, Huang L. J Univ Sci Technol Beijing, 2008; 30: 281 (张来启, 黄 蕾, 北京科技大学学报, 2008; 30: 281)
[23] Yoon J, Lee J, Lee K. Intermetallics, 2003; 11: 687
[24] Rosales I, Schneibel J H. Intermetallics, 2000; 8: 885
[25] Str?m E. Mater Charact, 2005; 55: 402
[26] Huebsch J. Intermetallics, 2000; 8: 143
[27] Hayashi T, Ito K, Numakura H. Intermetallics, 2005; 13: 93
[28] Wang S W, Chen L D, Hirai T. J Mater Res, 2000; 15: 982
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[4] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[5] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[8] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[11] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[12] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[13] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[14] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.
[15] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.