Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1384-1390    DOI: 10.11900/0412.1961.2015.00072
  本期目录 | 过刊浏览 |
GexSe90-xSb10硫系玻璃的热力学特性和动力学脆性研究*
李姣姣,坚增运(),朱满,许军锋,常芳娥,相敏
STUDY ON THERMODYNAMIC PROPERTIES AND KINETICS FRAGILITY OF GexSe90-xSb10 CHALCOGENIDE GLASSES
Jiaojiao LI,Zengyun JIAN,Man ZHU,Junfeng XU,Fang'e CHANG,Min XIANG
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021
引用本文:

李姣姣,坚增运,朱满,许军锋,常芳娥,相敏. GexSe90-xSb10硫系玻璃的热力学特性和动力学脆性研究*[J]. 金属学报, 2015, 51(11): 1384-1390.
Jiaojiao LI, Zengyun JIAN, Man ZHU, Junfeng XU, Fang'e CHANG, Min XIANG. STUDY ON THERMODYNAMIC PROPERTIES AND KINETICS FRAGILITY OF GexSe90-xSb10 CHALCOGENIDE GLASSES[J]. Acta Metall Sin, 2015, 51(11): 1384-1390.

全文: PDF(905 KB)   HTML
摘要: 

采用DSC对熔融-淬冷法制备的GexSe90-xSb10 (x=20, 23, 25, 30)玻璃及其晶体的性质进行了研究, 获得了GexSe90-xSb10玻璃在不同加热速率下的玻璃化转变温度Tg以及玻璃与晶体的比热容和熵随温度的变化关系, 在此基础上确定出了GexSe90-xSb10的动力学理想玻璃化转变温度T0, 热力学理想玻璃转变温度TK (Kauzmann温度)及动力学脆性参数m. 结果表明, GexSe90-xSb10的Tg, 玻璃与晶体的比热容和熵均随着升温速率的增加而增大. Tg和T0随Ge含量的增加呈现先增大后减小的变化规律, TK随Ge含量的增加呈现线性增大的规律. GexSe90-xSb10玻璃的m, Tg/TK, Tg/Tm和Tg/T0分别为20.7~23.2, 1.183~1.352, 0.678~0.742和1.006~1.019. GexSe90-xSb10玻璃的m均小于30, Tg/TK均大于1.1, 说明其为典型的“强”熔体; Tg/Tm均大于2/3, 说明其玻璃化形成能力比较强.

关键词 GexSe90-xSb10玻璃玻璃化转变温度比热容动力学脆性    
Abstract

The properties of the glasses and crystals of GexSe90-xSb10 (x=20, 23, 25, 30) prepared with melt quenching method have been analyzed by DSC. The glass transition temperature (Tg) of GexSe90-xSb10 glasses at different heating rates, the specific heat capacity and the entropy of the glasses and the crystals have been obtained. And on this basis, the kinetics ideal glass transition temperature (T0), the thermodynamics ideal glass transition temperature (TK) (Kauzmann temperature) and the kinetic fragility index (m) of GexSe90-xSb10 glasses have been determined. It is found that Tg, the specific heat capacity and the entropy increase with increasing the heating rate. Tg and T0 first increase and then decrease with increasing the Ge content, while TK increases linearly with the increase of Ge content. The m, Tg/TK, Tg/Tm and Tg/T0 are estimated to be 20.7~23.2, 1.183~1.352, 0.678~0.742 and 1.006~1.019, respectively. For each GexSe90-xSb10 glass in this work, its m is smaller than 30 and Tg/TK is larger than 1.1, which means that the GexSe90-xSb10 glass should be considered as a strong melt. The value of Tg/Tm is larger than 2/3, which indicates that amorphous GexSe90-xSb10 can be formed easily.

Key wordsGexSe90-xSb10 glass    glass transition temperature    specific heat capacity    kinetic fragility
    
基金资助:*国家重点基础研究发展计划项目2011CB610403, 国家自然科学基金项目51371137, 51071115, 51171136, 51301125 和51401156, 陕西省科技厅自然科学基金项目2012JM6010 和2014JM6225, 以及陕西省教育厅自然科学基金项目2013JK0907 资助
图1  GexSe90-xSb10 (x=20, 23, 25, 30)玻璃的XRD谱
图2  GexSe90-xSb10硫系玻璃在不同升温速率下的DSC曲线
图3  GexSe90-xSb10硫系玻璃升温速率随玻璃化转变温度的变化及Vogel-Fulcher拟合曲线
x a b c d e f
Jmol-1K-1 Jmol-1K-2 Jmol-1K-3 Jmol-1K-1 Jmol-1K-2 Jmol-1K-3
20 391.39 -1.378 0.00147 239.97 -1.097 0.00134
23 1000.96 -3.612 0.00357 270.83 -1.254 0.00162
25 800.50 -2.826 0.00279 429.24 -1.518 0.00154
30 1886.87 -6.169 0.00543 605.75 -2.529 0.00281
表1  GexSe90-xSb10过冷熔体及晶体比热容的拟合参数
图4  GexSe90-xSb10 (x=20, 23, 25, 30)试样比热容随温度的变化
图5  过冷Ge20Se70Sb10熔体态与其晶体的熵差
x Tg / K TK / K Tm / K Tg / Tm Tg / T0 Tg / TK m
20 503.81 376.89 743.06 0.678 1.007 1.337 22.5
23 522.89 401.68 760.67 0.687 1.016 1.302 20.7
25 565.99 418.77 762.37 0.742 1.006 1.352 23.2
30 559.26 473.41 768.70 0.728 1.019 1.183 21.3
表2  GexSe90-xSb10硫系玻璃的特征温度与动力学参数
[1] Angell C A. Science, 1995; 267: 1924
[2] Fontana G D, Battezzati L. Acta Mater, 2013; 61: 2260
[3] Mukherjee S, Schroers J, Johnson W L, Rhim W K. Phys Rev Lett, 2005; 94: 245501
[4] Turnbull D. Contemp Phys, 1969; 10: 473
[5] Kauzmann W. Chem Rev, 1948; 43: 219
[6] Jian Z Y, Zhou J, Chang F E, Jie W Q. Acta Metall Sin, 1999; 45: 1146 (坚增运, 周 晶, 常芳娥, 介万奇. 金属学报, 1999; 45: 1146)
[7] Debenedetti P G, Stillinger F H. Nature, 2001; 410: 259
[8] Gibson J M. Science, 2009; 326: 942
[9] Angell C A. J Non-Cryst Solids, 1985; 73: 1
[10] Cai A H, Ding D W, Xiong X, Liu Y, An W K, Zhou G J, Luo Y, Li T L, Li X S. Mater Des, 2014; 63: 233
[11] Gallino I, Schroers J, Busch R. J Appl Phys, 2010; 108: 063501
[12] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J,Bendnarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z. Acta Mater, 2008; 56: 1785
[13] Battezzati L, Castellero A, Rizzi P. J Non-Cryst Solids, 2007; 353: 3318
[14] Battezzati L. Rev Adv Mater Sci, 2008; 18: 184
[15] Glade S C, Busch R, Lee D S, Johnson W L, Wunderlich R K, Fecht H J. J Appl Phys, 2000; 87: 7242
[16] Evenson Z, Busch R. Acta Mater, 2011; 59: 4404
[17] Jiang Q, Xu X Y, Li J C. Acta Metall Sin, 1997; 33: 6 (蒋 青, 徐晓亚, 李建忱. 金属学报, 1997; 33: 6)
[18] Legg B A, Schroers J, Busch R. Acta Mater, 2007; 55: 1109
[19] Jia R, Bian X F, Wang Y Y. Chin Sci Bull, 2011; 56: 3912
[20] Lu Z P, Li Y, Liu C T. J Appl Phys, 2003; 93: 286
[21] Senkov O N. Phys Rev, 2007; 76B: 104202
[22] Jiang Q K, Zhang G Q, Yang L, Wang X D, Saksl K, Franz H,Wunderich R, Fecht H, Jiang J Z. Acta Mater, 2007; 55: 4409
[23] Fiore G, Battezzati L. J Alloys Compd, 2009; 483: 54
[24] Fan G J, L?ffler J F, Wunderlich R K, Fecht H J. Acta Mater, 2004; 52: 667
[25] Zhu M, Li J J, Yao L J, Jian Z Y, Chang F E, Yang G C. Thermochim Acta, 2013; 565: 132
[26] Gallino I, Gross O, Fontana G D, Evenson Z, Busch R. J Alloys Compd , 2014; 615: S35
[27] Zhang X H, Guimond Y, Bellec Y. J Non-Cryst Solids, 2003; 326: 519
[28] Varshneya A K, Mauro D J. J Non-Cryst Solids, 2007; 353: 1291
[29] Vázquez J, Barreda D G, López-Alemany P L, Villares P, Jiménez-Garay R. J Alloys Compd, 2005; 390: 94
[30] Lee J H, Lee W H, Park J K, Yi J H, Shin S Y, Park B J, So B, Heo J, Choi J H, Kim H J, Choi Y G. J Non-Cryst Solids, doi:
[31] Soltana A S, Abu-Sehly A A, Joraid A A, Alamri S N. Thermochim Acta, 2013; 574: 73
[32] Tlchy L, Tichá H. J Non-Cryst Solids, 1995; 189: 141
[33] Guo H, Tao H Z, Gong Y Q, Zhao X J. J Non-Cryst Solids, 2008; 354: 1159
[34] Dinsdale A T. Calphad, 1991; 15: 317
[35] Angell C A. MRS Bull, 2008; 33: 544
[36] Martinez L M, Angell C A. Nature, 2001; 410: 663
[37] Ito K, Moynihan C T, Angell C A. Nature, 1999; 398: 492
[38] Angell C A. J Non-Cryst Solids, 1988; 102: 205
[39] Kissinger H E. Anal Chem, 1957; 29: 1702
[40] Rabinal M K, Sangunni K S, Gopal E S R. J Non-Cryst Solids, 1995; 188: 98
[41] Zhang C Z. PhD Dissertation, Shandong University, Jinan, 2011 (张春芝. 山东大学博士学位论文, 济南, 2011)
[42] Guo Y F, Yavari A R, Zhang T. J Alloys Compd, 2012; 536: 91
[43] Angell C A. Physica, 1997; 107D: 122
[44] Sreeram A N, Varshneya A K, Swiler D R. J Non-Cryst Solids, 1991; 128: 294
[1] 贾婷婷,坚增运,许军锋,朱满,常芳娥. Ge30Se70硫系玻璃的特征温度和性能*[J]. 金属学报, 2016, 52(6): 755-760.