Please wait a minute...
金属学报  2015, Vol. 51 Issue (11): 1365-1376    DOI: 10.11900/0412.1961.2015.00020
  本期目录 | 过刊浏览 |
穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析*
吴宣楠1,冯妍卉1,2(),李岩1,李亚飞1,张欣欣1,2,武传松3
2 北京科技大学冶金工业节能减排北京市重点实验室, 北京 100083
3 山东大学材料科学与工程学院, 济南 250061
NUMERICAL SIMULATION AND ORTHOGONAL ANALYSIS ON COUPLED ARC WITH MOLTEN POOL FOR KEYHOLING PLASMA ARC WELDING
Xuannan WU1,Yanhui FENG1,2(),Yan LI1,Yafei LI1,Xinxin ZHANG1,2,Chuansong WU3
1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
2 Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083
3 School of Materials Science and Engineering, Shangdong University, Jinan 250061
引用本文:

吴宣楠,冯妍卉,李岩,李亚飞,张欣欣,武传松. 穿孔等离子弧焊接弧与熔池的耦合模拟及正交分析*[J]. 金属学报, 2015, 51(11): 1365-1376.
Xuannan WU, Yanhui FENG, Yan LI, Yafei LI, Xinxin ZHANG, Chuansong WU. NUMERICAL SIMULATION AND ORTHOGONAL ANALYSIS ON COUPLED ARC WITH MOLTEN POOL FOR KEYHOLING PLASMA ARC WELDING[J]. Acta Metall Sin, 2015, 51(11): 1365-1376.

全文: PDF(1322 KB)   HTML
摘要: 

针对穿孔等离子弧焊接工艺, 建立了定点焊的二维轴对称非稳态数理模型, 描述高温流动的电弧与工件熔池的耦合输运过程, 通过数值模拟获得了电场、磁场、流场与温度场的演变规律. 模拟焊缝熔合线与实验结果吻合较好, 验证了数学模型的合理性. 研究结果表明: W阴极尖端附近的电流密度与温度是最高的; 等离子弧在工件上部呈现出“钟形”, 而在中心轴线处因进入小孔呈细长的“锥形”; 高速Ar气等离子体冲击到小孔壁面时速度急剧降低, 小孔内出现高压区和Ar气等离子体的返流现象; 熔池内流动与传热的综合作用使焊缝熔合线呈倒“喇叭形”. 进一步对焊接的操作参数及焊枪结构参数进行了影响因素的正交试验模拟. 极差分析表明, 焊枪的结构因素比焊接操作参数更重要, 即对电极间距、电极内缩量、喷嘴孔径需予以重点考虑, 以获得良好的焊缝形状.

关键词 等离子弧焊接熔池耦合正交试验    
Abstract

A 2D axial symmetrical mathematical model was developed for stationary keyholing plasma arc welding (PAW), to describe the transport process in coupled high-temperature flow arc and molten pool in the workpiece. The evolutions of electric, magnetic, velocity and temperature fields were simulated. The simulated fusion line of the weld bead is in quite good agreement with the experimental results, validating the mathematical model. It turns out that, both the current density and the temperature reach the maximum values near the tip of the tungsten cathode. The arc displays a typical bell-shape above the workpiece, but becomes slim cone-shape near the central axis as the arc enters the keyhole. The argon plasma slows down sharply when it strikes the inner wall of the keyhole, so high pressure appears in the keyhole and some argon plasma flows back. The combination of fluid flow and heat transfer contributes to the reversed bugle shaped fusion line. The simulation of orthogonal test was further conducted to study the effects of operational and structural parameters of the weld torch. The range analysis shows that the structural parameters of weld torch are more influential than the operational parameters. That is, more attention should be paid to control the gap between two electrodes, the electrode shrinkage and the nozzle diameter to guarantee the welding quality.

Key wordsplasma arc    welding    molten pool    coupling    orthogonal test
    
基金资助:* 国家自然科学基金重点资助项目50936003
图1  穿孔等离子弧焊接(PAW)示意图
图2  穿孔PAW几何模型
Zone Source item Expression
Arc S r - p r - J z B θ
S z - p z + ρ g + J r B θ
S e J r 2 + J z 2 σ + 5 k B 2 e ( J r T r + J z T z ) - R
Molten pool S r - p r - μ l K v r
S z - p z + ρ g - μ l K v z
S e - ( ρ f l L a ) t - 1 r r ( r ρ v r f l L a ) - z ( ρ v z f l L a )
表1  动量与能量守恒方程的源项
图3  Ar气等离子体的热物性随温度变化曲线[34]
Condition vr vz T φ A
Initial 0 0 300 K 0 0
Boundary
AB 0 0 3000 K -24 V A / n = 0
BC 0 0 3000 K φ / n = 0 A / n = 0
CD 0 0.758 m/s 300 K φ / n = 0 A / n = 0
DE 0 0 1000 K φ / n = 0 A / n = 0
EF 0 0 1000 K φ / n = 0 A / n = 0
FG 0 0 1000 K φ / n = 0 A / n = 0
GH 0 0.764 m/s 300 K φ / n = 0 A / n = 0
HI v r / n = 0 0 300 K φ / n = 0 A / n = 0
IJ 0 0 Eq.(17) 0 0
JK 0 0 Eq.(17) 0 0
KL 0 v z / n = 0 300 K φ / n = 0 0
LA v r / n = 0 v z / n = 0 T / n = 0 φ / n = 0 A / n = 0
表 2  初始条件和边界条件
图4  在2.0 s时刻弧柱及工件中电势与电流密度分布
图5  在2.0 s时刻弧柱中电磁力分布
Nomenclature Symbol Value
Solidus temperature Ts 1663 K
Liquidus temperature Tl 1723 K
Latent heat of fusion La 2.6×105 Jkg-1
Specific heat cp,metal 630 Jkg-1K-1
Density rmetal 7200 kgm-3
Elementary charge e 1.602×10-19 C
Boltzmann constant kB 1.381×10-23 JK-1
Magnetic permeability m0 4π×10-7 Hm-1
Radiation emissivity e 0.4
Welding current i 169 A
Arc voltage u 24 V
Working gas flow rate qw 3 Lmin-1
Shielding gas flow rate qs 30 Lmin-1
Gap between two electrodes ga 5 mm
Electrode shrinkage le 2 mm
Nozzle diameter dn 2.8 mm
表 3  304不锈钢平板的物性参数与焊接工艺参数[8]
图6  在2.0 s时刻弧柱及工件中速度与温度分布
图7  在2.0 s时刻弧柱中流线与压强分布
图8  弧柱与工件中的速度场、温度场动态演变过程
图9  焊接熔池横断面实验与计算结果对比图
Level i / A qw / (Lmin-1) qs / (Lmin-1) ga / mm le / mm dn / mm rk / mm
1 169 3 20 5 2 2.8 2
2 159 1 10 3 0 1.8 1
3 179 5 30 7 4 3.8 3
表4  正交试验模拟因素水平表
图10  各影响因素下的焊缝上、底部熔宽的极差图
[1] Li T Q, Wu C S, Feng Y H, Zheng L C. Int J Heat Fluid Flow, 2012; 34: 117
[2] The Teaching Research Group for Welding in Institute of Electrical Mechanical Shenyang. Plasma Arc and Welding. Beijing: Science Press, 1978: 1 (沈阳机电学院焊接教研组. 等离子弧与焊接. 北京: 科学出版社, 1978: 1)
[3] Wang X J, Wu C S, Chen M A. Acta Metall Sin, 2010; 46: 984 (王小杰, 武传松, 陈茂爱. 金属学报, 2010; 46: 984)
[4] Huo Y S, Wu C S, Chen M A. Acta Metall Sin, 2011; 47: 1 (霍玉双, 武传松, 陈茂爱. 金属学报, 2011; 47: 1)
[5] Tashiro S, Tanaka M, Nakatani M, Tani K, Furubayashi M. Surf Coat Technol, 2007; 201: 5431
[6] Aithal S M, Subramaniam V V, Pagan J, Richardson R W. J Appl Phys, 1998; 40: 3506
[7] Tashiro S, Tsujimura Y, Tanaka M. Trans JWRI, 2012; 41: 7
[8] Li Y, Feng Y H, Zhang X X, Wu C S. Int J Therm Sci, 2013; 64: 93
[9] Daha M A, Nassef G A, Abdallah I A. Int J Eng Sci Technol, 2012; 4: 506
[10] Zhao Y Z, Lei Y P, Shi Y W. Acta Metall Sin, 2004; 40: 1085 (赵玉珍, 雷永平, 史耀武. 金属学报, 2004; 40: 1085)
[11] Dong W C, Lu S P, Li D Z, Li Y Y. Acta Metall Sin, 2008; 44: 249 (董文超, 陆善平, 李殿中, 李依依. 金属学报, 2008; 44: 249)
[12] Wu C S, Wang H G, Zhang M X. Acta Metall Sin, 2006; 42: 311 (武传松, 王怀刚, 张明贤. 金属学报, 2006; 42: 311)
[13] Zhang T, Wu C S, Chen M A. Acta Metall Sin, 2012; 48: 1025 (张 涛, 武传松, 陈茂爱. 金属学报, 2012; 48: 1025)
[14] Sun J H, Wu C S, Qin G L. Acta Metall Sin, 2011; 47: 1061 (孙俊华, 武传松, 秦国梁. 金属学报, 2011; 47: 1061)
[15] Li Y, Feng Y H, Zhang X X, Wu C S. Energy, 2014; 64: 1044
[16] Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy A B. Surf Coat Technol, 2008; 202: 5302
[17] Tashiro S, Miyata M, Tanaka M, Shin K, Takahashi K. Trans JWRI, 2010; 39: 27
[18] Tanaka M, Ushio M, John J L. Trans JWRI, 2003; 32: 259
[19] Nishiyama H, Sawada T, Tanaka H. ISIJ Int, 2006; 46: 705
[20] Bianchini R C, Favalli R C, Pimenta M M. J Phys, 2000; 33D: 134
[21] Liu Z M, Wu C S, Chen M A. Meas Sci Technol, 2012; 23: 1
[22] Liu Z M, Wu C S, Gao J Q. Int J Therm Sci, 2013; 63: 38
[23] Voler V R, Prakash C. Int J Heat Mass Trans, 1987; 30: 1709
[24] Bennon W D, Incropera F P. Int J Heat Mass Trans, 1987; 30: 2161
[25] Wang Y, Tsai H L. Int J Heat Mass Trans, 2001; 44: 2067
[26] Tanaka M, Ushio M, John J L. JSME Int J, 2005; 48: 397
[27] Du H Y. Master's Thesis, Lanzhou University of Technology, 2004 (杜华云. 兰州理工大学硕士学位论文, 2004)
[28] Wu C S. Welding Thermal Processes and Molten Pool Behaviors. Beijing: China Machine Press, 2007: 176 (武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2007: 176)
[29] Li Y, Feng Y H, Zhang X X, Wu C S. Acta Metall Sin, 2013; 49: 804 (李 岩, 冯妍卉, 张欣欣, 武传松. 金属学报, 2013; 49: 804)
[30] Sahoo P, Debroy T, McNallan M. Metall Mater Trans, 1988; 19B: 483
[31] Choo R T C, Sezkely J, Westhoff R C. Metall Mater Trans, 1992; 23B: 357
[32] Boulos M I,Fauchais P,Pfender E. Thermal Plasmas II. New York: Plenum Press, 1994: 388
[33] Casado E, Colomer V. J Phys, 2000; 33D: 1342
[34] Chen X. Thermal Plasma Heat Transfer and Flow. Beijing: Science Press, 2009: 540 (陈 熙. 热等离子体传热与流动. 北京: 科学出版社, 2009: 540)
[35] Jian X X, Wu C S. Int J Heat Mass Trans, 2015; 84: 839
[1] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[4] 陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
[5] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[6] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[7] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.
[8] 王聪, 张进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展[J]. 金属学报, 2021, 57(9): 1126-1140.
[9] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[10] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[12] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[13] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[14] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[15] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.