Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 107-113    DOI: 10.11900/0412.1961.2014.00336
  本期目录 | 过刊浏览 |
含缺陷金属Ti力学性能的模拟研究
梁力, 马明旺(), 谈效华, 向伟, 王远, 程焰林
中国工程物理研究院, 绵阳 621999
A SIMULATION STUDY OF MECHANICAL PROPER-TIES OF METAL Ti SAMPLE WITH DEFECTS
LIANG Li, MA Mingwang(), TAN Xiaohua, XIANG Wei, WANG Yuan, CHENG Yanlin
China Academy of Engineering Physics, Mianyang 621999
引用本文:

梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
Li LIANG, Mingwang MA, Xiaohua TAN, Wei XIANG, Yuan WANG, Yanlin CHENG. A SIMULATION STUDY OF MECHANICAL PROPER-TIES OF METAL Ti SAMPLE WITH DEFECTS[J]. Acta Metall Sin, 2015, 51(1): 107-113.

全文: PDF(5257 KB)   HTML
摘要: 

利用分子动力学模拟方法分别研究了空位、自间隙杂质原子、杂质He原子等缺陷对金属Ti样品的力学性能的影响. 对完整晶格的金属Ti在不同拉伸应变速率下的应力-应变曲线进行计算, 发现拉伸过程可分为弹性形变、塑性形变及断裂3个阶段. 分别研究了含有不同浓度的空位、自间隙杂质原子、杂质He原子缺陷的金属Ti样品在2×109 s-1拉伸应变速率下的应力-应变曲线, 并对不同情况下的Young's模量进行了统计. 还分别对含有自间隙杂质原子和杂质He原子的金属Ti的拉伸断裂过程进行了观察与分析.

关键词 缺陷力学性能分子动力学模拟    
Abstract

The effect of defects in metal Ti such as vacancies, self-interstitial atoms and impurity He atoms on mechanical properties of metal Ti sample was studied using molecular dynamics simulation. First, the stress-strain curves of perfect Ti sample at different strain rates were calculated. The results show that the stretching process can roughly be divided into three stages, elastic deformation, plastic deformation and fracturing. For comparison the stress-strain curves of metal Ti samples with vacancies, self-interstitial atoms and impurity He atoms were researched, respectively, in which the strain rate was set as 2×109 s-1. Finally the corresponding Young's moduli were calculated. It is found that after carefully investigating that the mechanical properties of metal Ti are degraded by each of these effects in it and the degradation degree increases with increasing defect concentration. However, the stretching process of samples is not essentially affected by these effects (the stress-strain curves of Ti samples with defects have still 3 stages). In this process, self-interstitial atoms in samples always exist for they to be bonded by metal Ti atoms, but impurity He atoms in samples are released due to their extraordinarily low solution in metal Ti.

Key wordsdefect    mechanical property    molecular dynamics simulation
    
ZTFLH:  TL341  
基金资助:*国家自然科学基金项目51406187, 中国工程物理研究院科学技术发展基金项目2014B0401060和中国工程物理研究院电子工程研究所科技创新基金项目S20140805项目
作者简介: null

梁力, 女, 1986年生, 助理研究员

图 1  不同拉伸应变速率下完整晶格金属Ti的应力-应变曲线
Strain rate / s-1 Young's modulus / GPa Tensile strength / GPa Fracture strain
2×108 128.47 10.62 0.130
5×108 132.03 10.65 0.131
1×109 129.09 10.72 0.135
2×109 130.08 10.68 0.133
5×109 129.98 10.86 0.144
表1  完整金属Ti样品在不同拉伸应变速率下的Young's模量、拉伸强度与断裂应变
图 2  含有不同空位浓度的金属Ti的应力-应变曲线及Young's模量与空位浓度的关系
Vacancy concentration / % Young's modulus / GPa Tensile strength / GPa Fracture strain
0 130.08 10.68 0.133
0.4 127.23 10.57 0.132
0.9 126.71 10.40 0.127
2.7 114.90 9.55 0.107
4.6 102.08 8.86 0.093
7.3 89.85 7.80 0.077
9.2 76.42 7.12 0.059
表2  含不同浓度空位金属Ti样品的Young's模量、抗拉强度与断裂应变
图 3  含有不同自间隙杂质原子浓度的金属Ti的应力-应变曲线及Young's模量与自间隙杂质原子浓度的关系
图 4  自间隙杂质原子浓度为3.1%的金属Ti样品在不同应变下拉伸的形貌图
SIA concentration / % Young's modulus / GPa Tensile strength / GPa Fracture strain
0 130.08 10.68 0.133
0.3 126.18 8.49 0.095
0.8 121.57 7.99 0.096
1.3 118.83 8.63 0.104
1.6 113.92 8.27 0.102
3.1 110.30 7.95 0.102
表3  含自间隙素质原子金属Ti样品的Young's模量、抗拉强度与断裂应变
图 5  含有不同杂质He原子浓度的金属Ti的应力-应变曲线及Young's模量与杂质He原子浓度的关系
Impurity He atom concentration / % Young's modulus / GPa Tensile strength / GPa Fracture strain
0 130.08 10.68 0.133
0.3 125.62 8.95 0.094
0.8 125.48 7.93 0.084
1.3 123.24 6.93 0.080
1.6 121.76 6.57 0.089
3.1 114.67 6.33 0.079
表4  含杂质He原子金属Ti样品在不同拉伸应变速率下的Young's模量、抗拉强度与断裂应变
图 6  杂质He原子浓度为3.1%的金属Ti样品在不同应变下拉伸的形貌图
[1] Boyer R R. Mater Sci Eng, 1996; A213: 103
[2] Wang K. Mater Sci Eng, 1996; A213: 134
[3] Geetha M, Singh A K, Asokamani R, Gogia A K. Prog Mater Sci, 2009; 54: 397
[4] Gurrappa I. Mater Charact, 2003; 51: 131
[5] Rack H J, Qazi J I. Mater Sci Eng, 2006; C26: 1269
[6] Wulf G L. Int J Mech Sci, 1979; 21: 713
[7] Lawson J E, Nicholas T. J Mech Phys Solids, 1972; 20: 65
[8] Sheikh-Ahmad J Y, Bailey J A. J Eng Mater Technol, 1995; 117: 139
[9] Chichili D R, Ramesh K T, Hemker K J. Acta Mater, 1998; 46: 1025
[10] Nemat-Nasser S, Guo W G, Cheng J Y. Acta Mater, 1999; 47: 3705
[11] Zhou F H, Wright T W, Ramesh K T. J Mech Phys Solids, 2006; 54: 904
[12] Zeng Z P, Jonsson S, Roven H J. Acta Mater, 2009; 57: 5822
[13] Xu Y B, Zhang J H, Bai Y L. Metall Mater Trans, 2008; 39A: 811
[14] Senkov O N, Dubios M, Jonas J J. Metall Mater Trans, 1996; 27A: 3963
[15] Han X L, Wang Q, Sun D L, Sun T, Guo Q. Mater Sci Technol, 2009; 17: 305
[15] (韩秀丽, 王 清, 孙东立, 孙 涛, 郭 强. 材料科学与工艺, 2009; 17: 305)
[16] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[17] Ackland G J. Philos Mag, 1992; 66A: 917
[18] Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C, Luo S Z. Chin Phys Lett, 2006; 23: 1666
[19] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. J Chem Phys, 1983; 79: 926
[20] Lee W S, Lin C F. Mater Sci Eng, 2001; A308: 124
[21] Setoyama D, Matsunaga J, Muta H, Uno M, Yamanaka S. J Alloys Compd, 2004; 381: 215
[22] Rajainmaki H, Linderoth S, Hansen H E, Nieminen R M, Bentzon M D. Phys Rev, 1988; 38B: 1087
[23] Singh A, Maji S,Nambissan P M G. J Phys: Condens Mater, 2001; 13: 177
[24] Trinkaus H, Singh B N. J Nucl Mater, 2003; 323: 229
[25] Iwakiri H, Yasunaga K, Morishita K, Yoshida N. J Nucl Mater, 2000; 283-287: 1134
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.