Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 107-113    DOI: 10.11900/0412.1961.2014.00336
  论文 本期目录 | 过刊浏览 |
含缺陷金属Ti力学性能的模拟研究
梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林
中国工程物理研究院, 绵阳 621999
A SIMULATION STUDY OF MECHANICAL PROPER-TIES OF METAL Ti SAMPLE WITH DEFECTS
LIANG Li, MA Mingwang, TAN Xiaohua, XIANG Wei, WANG Yuan, CHENG Yanlin
China Academy of Engineering Physics, Mianyang 621999
全文: PDF(5257 KB)   HTML
摘要: 利用分子动力学模拟方法分别研究了空位、自间隙杂质原子、杂质He原子等缺陷对金属Ti样品的力学性能的影响. 对完整晶格的金属Ti在不同拉伸应变速率下的应力-应变曲线进行计算, 发现拉伸过程可分为弹性形变、塑性形变及断裂3个阶段. 分别研究了含有不同浓度的空位、自间隙杂质原子、杂质He原子缺陷的金属Ti样品在2×109 s-1拉伸应变速率下的应力-应变曲线, 并对不同情况下的Young's模量进行了统计. 还分别对含有自间隙杂质原子和杂质He原子的金属Ti的拉伸断裂过程进行了观察与分析.
关键词 缺陷力学性能分子动力学模拟    
Abstract:The effect of defects in metal Ti such as vacancies, self-interstitial atoms and impurity He atoms on mechanical properties of metal Ti sample was studied using molecular dynamics simulation. First, the stress-strain curves of perfect Ti sample at different strain rates were calculated. The results show that the stretching process can roughly be divided into three stages, elastic deformation, plastic deformation and fracturing. For comparison the stress-strain curves of metal Ti samples with vacancies, self-interstitial atoms and impurity He atoms were researched, respectively, in which the strain rate was set as 2×109 s-1. Finally the corresponding Young's moduli were calculated. It is found that after carefully investigating that the mechanical properties of metal Ti are degraded by each of these effects in it and the degradation degree increases with increasing defect concentration. However, the stretching process of samples is not essentially affected by these effects (the stress-strain curves of Ti samples with defects have still 3 stages). In this process, self-interstitial atoms in samples always exist for they to be bonded by metal Ti atoms, but impurity He atoms in samples are released due to their extraordinarily low solution in metal Ti.
Key wordsdefect    mechanical property    molecular dynamics simulation
    
ZTFLH:  TL341  
基金资助:*国家自然科学基金项目51406187, 中国工程物理研究院科学技术发展基金项目2014B0401060和中国工程物理研究院电子工程研究所科技创新基金项目S20140805项目
Corresponding author: Correspondent: MA Mingwang, associate professor, Tel: (0816)2489785, E-mail: caepiee@163.com     E-mail: caepiee@163.com
作者简介: 梁力, 女, 1986年生, 助理研究员

引用本文:

梁力, 马明旺, 谈效华, 向伟, 王远, 程焰林. 含缺陷金属Ti力学性能的模拟研究[J]. 金属学报, 2015, 51(1): 107-113.
LIANG Li, MA Mingwang, TAN Xiaohua, XIANG Wei, WANG Yuan, CHENG Yanlin. A SIMULATION STUDY OF MECHANICAL PROPER-TIES OF METAL Ti SAMPLE WITH DEFECTS. Acta Metall Sin, 2015, 51(1): 107-113.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00336      或      https://www.ams.org.cn/CN/Y2015/V51/I1/107

图 1  不同拉伸应变速率下完整晶格金属Ti的应力-应变曲线
图 2  含有不同空位浓度的金属Ti的应力-应变曲线及Young's模量与空位浓度的关系
图 3  含有不同自间隙杂质原子浓度的金属Ti的应力-应变曲线及Young's模量与自间隙杂质原子浓度的关系
图 4  自间隙杂质原子浓度为3.1%的金属Ti样品在不同应变下拉伸的形貌图
图 5  含有不同杂质He原子浓度的金属Ti的应力-应变曲线及Young's模量与杂质He原子浓度的关系
图 6  杂质He原子浓度为3.1%的金属Ti样品在不同应变下拉伸的形貌图
表1  完整金属Ti样品在不同拉伸应变速率下的Young's模量、拉伸强度与断裂应变
表2  含不同浓度空位金属Ti样品的Young's模量、抗拉强度与断裂应变
表3  含自间隙素质原子金属Ti样品的Young's模量、抗拉强度与断裂应变
表4  含杂质He原子金属Ti样品在不同拉伸应变速率下的Young's模量、抗拉强度与断裂应变
[1] Boyer R R. Mater Sci Eng, 1996; A213: 103
[2] Wang K. Mater Sci Eng, 1996; A213: 134
[3] Geetha M, Singh A K, Asokamani R, Gogia A K. Prog Mater Sci, 2009; 54: 397
[4] Gurrappa I. Mater Charact, 2003; 51: 131
[5] Rack H J, Qazi J I. Mater Sci Eng, 2006; C26: 1269
[6] Wulf G L. Int J Mech Sci, 1979; 21: 713
[7] Lawson J E, Nicholas T. J Mech Phys Solids, 1972; 20: 65
[8] Sheikh-Ahmad J Y, Bailey J A. J Eng Mater Technol, 1995; 117: 139
[9] Chichili D R, Ramesh K T, Hemker K J. Acta Mater, 1998; 46: 1025
[10] Nemat-Nasser S, Guo W G, Cheng J Y. Acta Mater, 1999; 47: 3705
[11] Zhou F H, Wright T W, Ramesh K T. J Mech Phys Solids, 2006; 54: 904
[12] Zeng Z P, Jonsson S, Roven H J. Acta Mater, 2009; 57: 5822
[13] Xu Y B, Zhang J H, Bai Y L. Metall Mater Trans, 2008; 39A: 811
[14] Senkov O N, Dubios M, Jonas J J. Metall Mater Trans, 1996; 27A: 3963
[15] Han X L, Wang Q, Sun D L, Sun T, Guo Q. Mater Sci Technol, 2009; 17: 305 (韩秀丽, 王 清, 孙东立, 孙 涛, 郭 强. 材料科学与工艺, 2009; 17: 305)
[16] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[17] Ackland G J. Philos Mag, 1992; 66A: 917
[18] Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C, Luo S Z. Chin Phys Lett, 2006; 23: 1666
[19] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. J Chem Phys, 1983; 79: 926
[20] Lee W S, Lin C F. Mater Sci Eng, 2001; A308: 124
[21] Setoyama D, Matsunaga J, Muta H, Uno M, Yamanaka S. J Alloys Compd, 2004; 381: 215
[22] Rajainmaki H, Linderoth S, Hansen H E, Nieminen R M, Bentzon M D. Phys Rev, 1988; 38B: 1087
[23] Singh A, Maji S, Nambissan P M G. J Phys: Condens Mater, 2001; 13: 177
[24] Trinkaus H, Singh B N. J Nucl Mater, 2003; 323: 229
[25] Iwakiri H, Yasunaga K, Morishita K, Yoshida N. J Nucl Mater, 2000; 283-287: 1134
[1] 耿遥祥, 樊世敏, 简江林, 徐澍, 张志杰, 鞠洪博, 喻利花, 许俊华. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830.
[2] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[3] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[4] 姚小飞, 魏敬鹏, 吕煜坤, 李田野. (CoCrFeMnNi)97.02Mo2.98高熵合金σ相析出演变及力学性能[J]. 金属学报, 2020, 56(5): 769-775.
[5] 梁孟超, 陈良, 赵国群. 人工时效对2A12铝板力学性能和强化相的影响[J]. 金属学报, 2020, 56(5): 736-744.
[6] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[7] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[8] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[9] 马德新,王富,徐维台,徐文梁,赵运兴. 高温合金单晶铸件中条纹晶的形成机制[J]. 金属学报, 2020, 56(3): 301-310.
[10] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[11] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[12] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[13] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[14] 马小强,杨坤杰,徐喻琼,杜晓超,周建军,肖仁政. 金属Nb级联碰撞的分子动力学模拟[J]. 金属学报, 2020, 56(2): 249-256.
[15] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.