Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1377-1383    DOI: 10.11900/0412.1961.2014.00233
  本期目录 | 过刊浏览 |
一种新型镍基耐蚀合金焊接接头的组织与力学性能
赵霞1,2, 刘扬3, 查向东2, 程乐明3, 马颖澈2(), 刘奎2
1 东北大学材料与冶金学院, 沈阳 110819
2 中国科学院金属研究所, 沈阳 110016
3 新奥科技发展有限公司, 廊坊 065001
MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF WELDING JOINT OF A NEW CORROSION RESISTANT Ni-BASED ALLOY
ZHAO Xia1,2, LIU Yang3, ZHA Xiangdong2, CHENG Leming3, MA Yingche2(), LIU Kui2
1 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3 ENN Science & Technology Development Co. Ltd., Langfang 065001
引用本文:

赵霞, 刘扬, 查向东, 程乐明, 马颖澈, 刘奎. 一种新型镍基耐蚀合金焊接接头的组织与力学性能[J]. 金属学报, 2014, 50(11): 1377-1383.
Xia ZHAO, Yang LIU, Xiangdong ZHA, Leming CHENG, Yingche MA, Kui LIU. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF WELDING JOINT OF A NEW CORROSION RESISTANT Ni-BASED ALLOY[J]. Acta Metall Sin, 2014, 50(11): 1377-1383.

全文: PDF(6713 KB)   HTML
摘要: 

测试一种新型镍基耐蚀合金(X-2#)手工氩弧焊接接头的拉伸性能和硬度, 并结合OM, SEM和EDS等技术研究焊接接头的组织和性能. 结果表明, X-2#合金焊接接头焊缝区为铸态组织, 熔合区从基体到焊缝金属组织过渡良好, 热影响区没有晶粒明显粗化现象, 母材晶粒尺寸约为65 mm, 有利于接头的焊接. 新合金焊缝区的Vickers硬度小于基体, 但焊缝重熔区的硬度由于等轴晶数量增多而变大. 合金中W和Mo等固溶强化元素及Al和Ti沉淀强化元素使X-2#合金焊接接头具有较好的高温强度及热稳定性. 合金焊接接头室温与高温下的抗拉强度均低于母材, 焊接系数η大于88%, 焊缝区为接头最薄弱环节, 拉伸断口均为韧性断口, 断裂机制为正断与剪切断的混合断裂.

关键词 镍基耐腐蚀合金焊缝区熔合区热影响区    
Abstract

Industrial wastewater shows the characteristics of high concentration, complex composition and difficulty to degrade. Supercritical water oxidation (SCWO) gains extensive attention and application in wastewater treatment. This method of wastewater treatment is carried out in the high temperature, high pressure, strong corrosion and oxidation conditions. Thus, the corrosion resistance of the materials used in the treatment equipment should possess excellent performance. Especially for the preheater or reactor piping material, the problem is more outstanding. In this work, a new corrosion resistant Ni-based alloy used in supercritical water oxidation environment was investigated. The microstructure and fracture morphologies of the welding joint were observed and analyzed by OM, SEM and EDS, and the microhardness, tensile strength and other mechanical properties were tested as well. The results indicate that the welding seam of the alloy welding joint can be categorized into cast structure. The microstructure of fusion zone has no welding defect, and the heat affected zone (HAZ) has no grain coarsening phenomenon. The grain size of the alloy is 65 mm. The Vickers hardness of the alloy welding seam are less than the matrix. However, as the number of isometric crystals increases, the Vickers hardness of welding remelting zone becomes large. Because of including W, Mo, Al ,Ti in the alloy, X-2# alloy welding joint has good high-temperature strength and thermal stability. Due to the tensile strength of welding joints in the new alloys is lower than the parent materials, the welding seam is the weakest link. The tensile tests at room temperature and high temperature show tenacity fractures, and the fracture mechanism is mixed with normal fault and shear fault.

Key wordsNi-based corrosion resistant alloy    welding seam zone    fusion zone    heat affected zone
收稿日期: 2014-07-25     
ZTFLH:  TG142.1  
作者简介: null

赵 霞, 女, 1989年生, 硕士生

图1  焊接接头显微硬度测试位置示意图
图2  拉伸试样尺寸示意图
图3  X-2#合金焊接接头的OM像
图4  X-2#合金焊接接头的显微硬度分布
图5  X-2#合金焊接接头在不同温度拉伸后的形貌
Temperature / ℃ Rm1 / MPa Rm2 / MPa η / %
20 715 685 95.9
300 637 586 92.0
400 615 572 93.0
500 597 555 93.1
600 560 528 94.3
700 557 491 88.1
表1  X-2#合金焊接接头在不同温度下的拉伸实验数据
图6  X-2#合金焊接接头在不同温度拉伸后的断口形貌
图7  韧窝断口上的夹杂物形貌
[1] Ding Z H. Organic Wastewater Treatment Technology and Its Application. Beijing: Chemical Industry Press, 2002: 1
[1] (丁忠浩. 有机废水处理技术及应用. 北京: 化学工业出版社, 2002: 1)
[2] Ma C Y, Zhao X C, Zhu F L, Guo K Q, Wu R X. Modern Chem Ind, 2007; 27: 497
[2] (马承愚, 赵晓春, 朱飞龙, 郭凯琴, 吴荣霞. 现代化工, 2007; 27: 497)
[3] Zhang P, Wang J C, Zhang X D, Liu X W, Xia Y J, Li Z Y. Environ Prot Sci, 2003; 29(5): 15
[3] (张 平, 王景昌, 张晓冬, 刘学武, 夏远景, 李志义. 环境保护科学, 2003; 29(5): 15)
[4] Zhu F W, Zhang L F, Qiao P P, Liu R Q, Bao Y C, Chen Y Q. Nucl Power Eng, 2009; 30(5): 62
[4] (朱发文, 张乐福, 乔培鹏, 刘瑞芹, 鲍一晨, 陈宇清. 核动力工程, 2009; 30(5): 62)
[5] Kritzer P. J Supercrit Fluids, 2004; 29: 1
[6] Was G S, Ampornrat P, Gupta G, Teysseyrea S, Westa E A, Allenb T R, Sridharanb K, Tanb L, Chenb Y, Renb X, Pister C. J Nucl Mater, 2007; 371(1-3): 176
[7] Yin K J, Qiu S Y, Tang R, Zhang Q, Zhang L F. J Supercrit Fluids, 2009; 50: 235
[8] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520
[9] Ampornrat P, Was G S. J Nucl Mater, 2007; 371(1-3): 1
[10] Chen Y, Sridharan K, Allen T R. Corros Sci, 2006; 48: 2843
[11] Tan L Z, Yang Y, Allen T R. Corros Sci, 2006; 48: 4234
[12] Tan L Z, Yang Y, Allen T R. Corros Sci, 2006; 48: 3123
[13] Wright L G, Dooley R B. Int Mater Rev, 2010; 55: 129
[14] Sun C W, Hui R. Corros Sci, 2009; 51: 2508
[15] Chen Y, Sridharan K, Ukai S, Allen T R. J Nucl Mater, 2007; 371: 118
[16] Cho H S, Kimura A. J Nucl Mater, 2007; 367-370: 1180
[17] Isselin J, Kasada R, Kimura A. Corros Sci, 2010; 52: 3266
[18] Siwy A D, Clark T E, Motta A T. J Nucl Mater, 2009; 392: 280
[19] Zhu F W, Zhang L F, Tang R, Qiao P P, Liu R Q. At Energy Sci Technol, 2009; 43(6): 39
[19] (朱发文, 张乐福, 唐 睿, 乔培鹏, 刘瑞芹. 原子能科学技术, 2009; 43(6): 39)
[20] Was G S, Teysseyre S, Jiao Z. Corrosion, 2006; 62: 989
[21] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[22] Halvarsson M, Tang J E, Asteman H, Svensson J E, Johansson L G. Corros Sci, 2006; 48: 2014
[23] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 3056
[24] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[25] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F. Corros Sci, 2009; 51: 2092
[26] Bao Y C. Master Thesis, Shanghai Jiao Tong University, 2011
[26] (鲍一晨. 上海交通大学硕士学位论文, 2011)
[27] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel-base Alloys. Hoboken: John Wiley & Sons Inc, 2009: 47
[28] Sima A P. Master Thesis, Shanghai Jiao Tong University, 2009
[28] (司马爱平. 上海交通大学硕士学位论文, 2009)
[29] Zheng C Q,Zhou L,Zhang K S. Study on Mechanical and Its Application to Mesoscopic Metal Ductile Damage. Beijing: National Defence Industry Press, 1995: 27
[29] (郑长卿,周 利,张克实. 金属韧性破坏的细观力学及其应用研究. 北京: 国防工业出版社, 1995: 27)
[30] Zhao B H,He L,Yao Y M. Welding Processing Technology and Quality Testing, Failure Analysis and Metallograph Practical Handbook. Beijing: Metallurgical Industry Press, 2006: 1203
[30] (赵炳辉,何 伦,姚一鸣. 焊接件加工处理工艺与质量检测、失效分析技术及金相图谱实用手册. 北京: 冶金工业出版社, 2006: 1203)
[1] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[2] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[3] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[4] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[5] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[6] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[7] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[8] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[9] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[10] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[11] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[12] 赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*[J]. 金属学报, 2015, 51(2): 249-256.
[13] 周峰, 赵霞, 查向东, 马颖澈, 刘奎. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11): 1335-1342.
[14] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[15] 聂文金 尚成嘉 由洋 张晓兵 Sundaresa Subramanian. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48(7): 797-806.