Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 333-340    DOI: 10.11900/0412.1961.2014.00552
  论文 本期目录 | 过刊浏览 |
晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响
杨辉1, 夏爽1, 2, 张子龙1, 赵清1, 刘廷光1, 周邦新1, 2, 白琴1, 2
1 上海大学材料研究所, 上海 200072; 2 上海大学微结构重点实验室, 上海 200444
IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL
YANG Hui1, XIA Shuang1, 2, ZHANG Zilong1, ZHAO Qing1, LIU Tingguang1, ZHOU Bangxin1, 2, BAI Qin1, 2
1 Institute of Materials, Shanghai University, Shanghai 200072; 2 Key Laboratory for Microstructure, Shanghai University, Shanghai 200444
全文: PDF(7166 KB)   HTML
摘要: 通过拉伸变形5%及1100 ℃退火30 min的晶界工程(GBE)处理工艺, 将304奥氏体不锈钢低Σ重合位置点阵(CSL)晶界比例提高到75% (Palumbo-Aust标准)以上, 形成大尺寸的“互有Σ3n取向关系晶粒的团簇”显微组织. 采用钨极气体保护焊焊接样品, 对焊接后样品的HAZ区域进行显微组织表征和耐腐蚀性能测试. 结果表明, GBE处理过的304奥氏体不锈钢具有较好的晶界网络稳定性, HAZ区域内仍具有高比例低ΣCSL晶界, 并且晶粒尺寸并未明显变大. 在晶间腐蚀浸泡实验和电化学动电位再活化法(EPR)测试中, GBE处理的样品HAZ敏化区都表现出了更好的耐腐蚀性能, 表明晶界工程可以有效改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能.
关键词 304奥氏体不锈钢晶界工程热影响区晶间腐蚀焊接    
Abstract:The heat-affected zone (HAZ) produced by welding in stainless steel has higher susceptibility to intergranular corrosion, which is attributed to the Cr depletion induced by grain-boundary carbide-precipitation. The grain boundary engineering can be used to control over the grain boundary structure, which has significant influence on the carbide precipitation and the associated Cr depletion and hence on the susceptibility to intergranular corrosion. The grain boundary network in a 304 austenite stainless steel can be controlled by grain boundary engineering (GBE) with 5% tensile deformation and subsequent annealing at 1100 ℃ for 30 min. The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 75%, and the large-size highly-twinned grain-cluster microstructure was formed through the treatment of GBE. Specimens were welded by gas tungsten arc-welding. Then the microstructure and the corrosion resistance of HAZ were characterized. The result showed that the high proportion of low ΣCSL boundaries and the optimum grain boundary character distribution were stable in the HAZ of the grain boundary engineered stainless steel, and the grain size was nearly the same. The weld-decay region of GBE samples performed better intergranular corrosion resistance during the intergranular corrosion immersion experiment and electrochemical potentiokinetic reactivation (EPR) test. The reported results indicated that the grain boundary engineering can effectively improve the intergranular corrosion resistance of the heat-affected zone in 304 austenitic stainless steel.
Key words304 austenite stainless steel    grain boundary engineering    heat-affected zone    intergranular corrosion    welding
    
ZTFLH:  TG174.1  
基金资助:* 国家重点基础研究发展计划项目2011CB610502和上海市科委重点支撑项目13520500500资助
Corresponding author: Correspondent: XIA Shuang, associate professor, Tel: (021)56337934, E-mail: xs@shu.edu.cn     E-mail: xs@shu.edu.cn
作者简介: 杨辉, 男, 1989年生, 硕士

引用本文:

杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2015, 51(3): 333-340.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00552      或      https://www.ams.org.cn/CN/Y2015/V51/I3/333

Images/0895-3988-333/img7FD5  样品氩弧焊焊接方式示意图
Images/0895-3988-333/grp8024  样品A和B不同类型晶界的OIM图
Images/0895-3988-333/img817C  焊接样品A和B蚀刻后的宏观显微组织
Images/0895-3988-333/grp83B0  焊接样品A和B各区域显微组织中不同晶界类型分布OIM图
Images/0895-3988-333/img83FF  焊接样品A和B各区域显微组织中低Σ
Images/0895-3988-333/grp868F  CSL晶界比例及晶粒尺寸
Images/0895-3988-333/img86AF  腐蚀48 h后焊接样品A和B表面宏观形貌和HAZ敏化区SEM像
[1] Yang W D. Nuclear Reactor Materials Science. Beijing: Atomic Energy Press, 2000: 195 (杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 195)
[2] Trillo E A, Murr L E. Acta Mater, 1998; 47: 235
[3] Zhou Y, Aust K T, Erb U, Palumbo G. Scr Mater, 2001; 45: 49
[4] Kokawa H, Shimada M, Michiuchi M, Wang Z J, Sato Y S. Acta Mater, 2007; 55: 5401
[5] Zhou Z F. Welding Metallurgy. Beijing: Mechanical Industry Press, 2001: 68 (周振丰. 焊接冶金学. 北京: 机械工业出版社, 2001: 68)
[6] Li Y J. Welding of Structural Alloy Steel and Stainless Steel. Beijing: Chemical Industry Press, 2012: 218 (李亚江. 合金结构钢及不锈钢的焊接. 北京: 化学工业出版社, 2012: 218)
[7] Watanable T. Res Mech, 1984; 11: 47
[8] Kronberg M L, Wilson F H. Trans AIME, 1949; 185: 501
[9] Randle V. Acta Mater, 2004; 52: 4067
[10] Lehockey E M, Limoges D, Palumbo G, Sklarchuk J, Tomantscher K, Vincze A. J Power Sour, 1999; 78: 79
[11] Thaveeprungsriporn V, Was G S. Metall Trans, 1997; 28: 2101
[12] Xia S, Zhou B X, Chen W J, Wang W G. Scr Mater, 2006; 54: 2019
[13] Xia S, Zhou B X, Chen W J. J Mater Sci, 2008; 43: 2990
[14] Xia S, Zhou B X, Chen W J. Metall Mater Trans, 2009; 40A: 3016
[15] Xia S, Zhou B X, Chen W J, Wang W G. Acta Metall Sin, 2006; 42: 129 (夏 爽, 周邦新, 陈文觉, 王卫国. 金属学报, 2006; 42: 129)
[16] Wang W G, Zhou B X, Feng L, Zhang X, Xia S. Acta Metall Sin, 2006; 42: 715 (王卫国, 周邦新, 冯 柳, 张 欣, 夏 爽. 金属学报, 2006; 42: 715)
[17] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J. Acta Metall Sin, 2011; 47: 939 (胡长亮, 夏 爽, 李 慧, 刘廷光, 周邦新, 陈文觉. 金属学报, 2011; 47: 939)
[18] Hu C L, Xia S, Li H, Liu T G, Zhou B X, Chen W J, Wang N. Corros Sci, 2011; 53: 1880
[19] Fang X Y, Zhang K, Guo H, Wang W G, Zhou B X. Mater Sci Eng, 2008; A487: 7
[20] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I. Acta Mater, 2002; 50: 2331
[21] Brandon D G. Acta Mater, 1966; 14: 1479
[22] Palumbo G, Aust K T, Lehockey E M. Scr Mater, 1998; 38: 1685
[23] de Lima-Neto P, Farias J P, Abreu H F G. Corros Sci, 2008; 50: 1149
[24] Arutunow A, Darowicki K. Electrochim Acta, 2009; 54: 1034
[25] Aydodu G H, Aydinol M K. Corros Sci, 2006; 48: 3565
[26] Yu X, Chen S, Liu Y, Ren F. Corros Sci, 2010; 52: 1939
[27] Leiva-García R, Mu?oz-Portero M J, García-Antón J. Corros Sci, 2009; 51: 2080
[28] Bi H Y, Kokawa H, Wang Z J. Scr Mater, 2003; 49: 21
[29] Li H, Xia S, Zhou B X, Chen W J, Hu C L. J Nucl Mater, 2010; 399: 108
[1] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[2] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[3] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[4] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[5] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[6] 陈树君. 基于中间过渡层的 5A06/0Cr18Ni10Ti 气化冲击焊接工艺研究[J]. 金属学报, 2019, 55(8): 1041-1048.
[7] 蔡超,李煬,李劲风,张昭,张鉴清. 2A97 Al-Li合金薄板时效析出与电位及晶间腐蚀的相关性研究[J]. 金属学报, 2019, 55(8): 958-966.
[8] 杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
[9] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[10] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[11] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[12] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[13] 张敏,贾芳,程康康,李洁,许帅,仝雄伟. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
[14] 王晨, 王贝贝, 薛鹏, 王东, 倪丁瑞, 陈礼清, 肖伯律, 马宗义. SiCp/6092Al复合材料搅拌摩擦焊接头的疲劳行为研究[J]. 金属学报, 2019, 55(1): 149-159.
[15] 宋哲, 吴圣川, 胡雅楠, 康国政, 付亚楠, 肖体乔. 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响[J]. 金属学报, 2018, 54(8): 1131-1140.