Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 797-806    DOI: 10.3724/SP.J.1037.2012.00215
  论文 本期目录 | 过刊浏览 |
抗变形X100管线钢模拟焊接热影响区的组织与韧性研究
聂文金1, 2), 尚成嘉1), 由洋1), 张晓兵2), Sundaresa Subramanian3)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 江苏沙钢集团有限公司总工办, 张家港 215625
3) Department of Materials and Engineering, McMaster University, Hamilton, Canada, L8S4M1
MICROSTRUCTURE AND TOUGHNESS OF THE SIMULATED WELDING HEAT AFFECTED ZONE IN X100 PIPELINE STEEL WITH HIGH DEFORMATION RESISTANCE
NIE Wenjin, SHANG Chengjia, YOU Yang, ZHANG Xiaobing,  Sundaresa Subramanian
1) School of Material Science and Technology, University of Science and Technology Beijing, Beijing 100083
2) Chief Engineer Office, Jiangsu Shagang Group, Zhangjiagang 215625
3) Department of Materials and Engineering, McMaster University, Hamilton, Canada, L8S4M1
引用本文:

聂文金 尚成嘉 由洋 张晓兵 Sundaresa Subramanian. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48(7): 797-806.
, , , , . MICROSTRUCTURE AND TOUGHNESS OF THE SIMULATED WELDING HEAT AFFECTED ZONE IN X100 PIPELINE STEEL WITH HIGH DEFORMATION RESISTANCE[J]. Acta Metall Sin, 2012, 48(7): 797-806.

全文: PDF(9618 KB)  
摘要: 采用Gleeble-3800热模拟机研究了多相抗变形X100高Nb含量管线钢的焊接性能, 利用金相显微技术(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)对模拟焊接热影响区的组织进行了表征, 结合示波冲击及微观硬度实验结果分析了影响模拟焊接热影响粗晶区(CGHAZ)的低温韧性及热影响区硬度与组织之间的关系. 研究表明, 高Nb抗变形X100管线钢单道次焊接热输入小于20 kJ/cm时的CGHAZ具有较高韧性, 形成大角晶界密度较高的板条贝氏体或针状铁素体; 焊接热输入大于等于25 kJ/cm会导致CGHAZ晶粒均匀性的恶化, 使 M/A组元粗化, 并形成取向单一的粗大粒状贝氏体; 示波冲击实验及SEM断口分析显示, 粗大的M/A组元处极容易启裂, 高的大角晶界密度可显著提高裂纹扩展功, 使材料韧化. 同时, 为保证焊接热影响区不过度软化, 以及高硬度产生抗氢致延迟破坏, 单道次的焊接热输入以15-20 kJ/cm为宜.
关键词 X100管线钢热影响区热输入韧性抗变形显微组织    
Abstract:A single welding thermal-cycles with different heat inputs (8, 16, 20, 25, 30 and 50 kJ/cm) were simulated by Gleeble 3800 to study the correlation of toughness, hardness and microstructure in heat affect zone (HAZ) of the X100 pipeline steel with multi-phases and 0.10\%Nb (mass fraction). The microstructures of the CGHAZ in HAZ were characterized by means of OM, SEM and EBSD, and mechanical properties were tested. The results show that for a low heat input of less than 20 kJ/cm, the microstructure is lath bainite or acicular ferrite structure with high-density of large-angle boundaries (≧15o), which exhibits good Charpy impact toughness. However, for a large heat input over 25 kJ/cm, the uniformity of prior austenite grains becomes worse, the M/A constituents and the granular bainite (GB) are coarsening, and the amount of large-angle boundaries decreases with the increase of heat input. The results of the instrumented Charpy impact test and the observation of fracture surfaces on the specimens indicate that the cracks are induced near the coarse M/A constituents and the large-angle boundaries can remarkably restrict crack propagations. Therefore, in order to ensure a strong match between the HAZ and the base metal, and the resistance to hydrogen induced delayed damage because of high hardness of HAZ, the heat input energy should be about between 15 and 20  kJ/cm.
Key wordspipeline steel    heat affect zone(HAZ)    heat input    toughness    deformation resistance    microstructure
收稿日期: 2012-04-20     
基金资助:

国家重点基础研究发展计划资助项目2010CB630801

作者简介: 聂文金, 男, 1978年生, 博士生
[1] Wang X X. Weldding Pipe, 2012; 35( ): 5

(王晓香. 焊管, 2012; 35(~): 5)

[2] Shang C J, WangX X, Liu Q Y, Fu J Y. Int Seminar on Welding of Pipline Steel, Arasa, Brazil: December, 2011

[3] Miao C L, Shang C J, Cao J P, Wang X M, He X L. Iron Steel, 2009; 44: 62

(缪成亮, 尚成嘉, 曹建平, 王学敏, 贺信莱. 钢铁, 2009, 44: 62)

[4] Miao C L, Shang C J, Zhang G D, Sunbrainmani S. Mater Sci Eng, 2010; A527: 4985

[5] Miao C L, Shang C J, Wang X M, Zhang L F, Subramanian S V. Acta Metall Sin, 2010; 46: 5419

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Subramanian S V. 金属学报, 2010; 46: 5419)

[6] Miao C L, Shang C J, Zhang G D, Zhu G H, Zurob H, Subramanian S V. Front Mater Sci China, 2010; 4: 197

[7] Nie W J, Shang C J, Guan H L,Zhang X B, Chen S H. Acta Metall Sin, 2012; 48: 298

(聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)

[8] Shang C J. Technology Forum on High Grade Pipeline Steels for Oil & Gas Industry–New Challenges for Steels from Strategic Demand of Exploration and Transportation of Oil & Gas, Beijing, Chinese Society for Metals (CSM), 2011: 55)

(尚成嘉. 石油天然气用高性能钢技术论坛--油气开采、储运的战略需求对钢铁材料的新挑战, 北京: 中国金属学会, 2011: 55)

[9] Miao C L, Liu Z W, Guo H, Shang C J, Fu H Y, Wang X X. Trans Mater Heat Treatment, 2012; 33: 99

(缪成亮, 刘振伟, 郭晖, 尚成嘉, 付彦宏, 王晓香. 材料热处理学报, 2012; 33: 99)

[10] Grong φ. Metallurgical Modelling of Welding. 2nd ed. London: The Institute of Materials, 1997: 26

[11] Zurob H S, Zhu G, Subramanian S V, Purdy G R. Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713

[12] Diazfuentes M, Izamendia A, Gutierrez I. Metall Mater Trans, 2003; 34A: 2005

[13] Lambert A, Garat X, Sturel T, Gourgues A F, Gingell A. Scr Mater, 2000; 43: 161

[14] Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26

[15] Wang Y K, Shan Y Y. Inter Pipeline Steel Summit, Beijing, 2009: 162

(王仪康, 单以银. 国际管线钢峰会, 北京, 2009: 162)

[16] Wang Y K, Pan J H, Yang K, Shan Y Y. Weldding Pipe, 2007; 30(1): 11

(王仪康, 潘家华, 杨 柯, 单以银. 焊管, 2007; 30(1): 11)

[17] Li H L, Li X, Ji L K, Chen H D. Weldding Pipe, 2007; 30(5): 5

(李鹤林, 李宵, 吉玲康, 陈宏达. 焊管, 2007; 30(5): 5)

[18] Hwang B, Kim Y G, Lee S, Kim Y M, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107

[19] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435

[20] Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46

[21] Sungtak Lee, Byung Chun Kim, Dongil Kwon. Metall Mater Trans, 1993; 24A: 1133

[22] Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882

(刘冬雨, 徐鸿, 杨 昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882)

[23] Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233

(刘东升, 程丙贵, 罗咪. 金属学报, 2011; 47: 1233)

[24] Wiesner C S. Int J Pres Ves Piping, 1996; 69: 185

[25] Hashemi S H. Int J Pres Ves Piping, 2008; 85: 879
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[11] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[12] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[13] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.