Please wait a minute...
金属学报  2014, Vol. 50 Issue (11): 1335-1342    DOI: 10.11900/0412.1961.2014.00284
  论文 本期目录 | 过刊浏览 |
一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能
周峰1,2, 赵霞1,2, 查向东2, 马颖澈2, 刘奎2
1 东北大学材料与冶金学院, 沈阳 110819; 2 中国科学院金属研究所, 沈阳 110016
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE WELDING JOINT OF A NEW CORROSION- RESISTING NICKEL-BASED ALLOY AND 304 AUSTENITIC STAINLESS STEEL
ZHOU Feng1,2, ZHAO Xia1,2, ZHA Xiangdong2, MA Yingche2, LIU Kui2
1 School of Materials and Metallurgy, Northeastern University, Shenyang 110819; 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(9034 KB)   HTML
摘要: 对一种新型镍基耐蚀合金(X-2#)与304奥氏体不锈钢手工氩弧焊接接头进行拉伸性能和硬度的测试, 并结合OM, SEM和EDS等手段, 系统研究了焊接接头的组织和力学性能. 结果表明, X-2#/304异种金属焊接母材晶粒尺寸为40~65 mm, 有利于异种钢的焊接; X-2#合金一侧熔合区未发现焊接缺陷, 而304奥氏体不锈钢一侧有铁素体析出, 铁素体中富Cr贫Ni; 重熔区附近与靠304奥氏体不锈钢一侧的热影响区晶粒长大严重. X-2#/304异种金属焊接接头热影响区的Vickers硬度最小. X-2#/304焊接接头室温拉伸断裂位置在焊缝区, 而高温拉伸断裂位置在304奥氏体不锈钢基体. 由于Al, W和Mo元素的强化作用, X-2#合金的高温力学性能优于304奥氏体不锈钢.
关键词 X-2#/304焊接接头焊缝区熔合区热影响区    
Abstract:With the fast development of industry, a serious global problem, pollution, becomes more apparent. A large number of wastewater is discharged, causing the environment pollution. Supercritical water oxidation (SCWO) becomes the most effective method to treat the wastewater within recent years, but the material used in the equipment plays a key role in restricting the application of the SCWO process. Currently, during the SCWO wastewater treatment process, 304 austenitic stainless steel, alloy 625, P91 and P92 steels are the mainly preheater and reactor materials. In order to reduce the serious corrosion and improve economic efficiency of the materials for this process, a new corrosion resistant Ni-based alloy (called X-2# alloy) has been developed with an aim of replacing the previous ones. In particular, it is highly important to the related behavior of this new alloy welding with the original SCWO. Therefore, the microstructure and mechanical properties of the welding joint of the new alloy and 304 austenitic stainless steel with manual argon arc welding were investigated. The microstructure and fracture morphologies of the welding joint were analyzed through OM, SEM and EDS, and the detailed analysis of the micro-hardness, tensile strength and other mechanical properties were performed. The results demonstrated that the parent material with the typical 40~65 mm grains size is helpful for dissimilar steel welding, and the microstructure in fusion zone of X-2# side does not show welding defects. However, some ferrites are further formed near the fusion zone of 304 stainless steel sides. There are Cr-rich and Ni-poor distributions in the ferrites. The grain grows seriously in both the areas near the remelt zone and 304 stainless steel side of heat affected zones (HAZs), which affect heavily the performance of welding joint. In addition, the results also uncover that the Vickers-hardness is the minimum in the HAZ. At room temperature, the fracture location of the tensile tests of X-2#/304 is in the welding seam, whereas at 500 ℃ the corresponding position is in the 304 matrix. Due to the strengthening effects of Al, W and Mo elements, the high temperature mechanical properties of X-2# alloy have been found to be even better than those of the 304 austenitic stainless steel.
Key wordsX-2#/304 welding joint    welding seam    fusion zone    heat affected zone
收稿日期: 2014-08-06     
ZTFLH:  TG142.1  
Corresponding author: Correspondent: MA Yingche, associate professor, Tel: (024)23971986, E-mail:ycma@imr.ac.cn   
作者简介: 周峰, 男, 1974年生, 博士生

引用本文:

周峰, 赵霞, 查向东, 马颖澈, 刘奎. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11): 1335-1342.
ZHOU Feng, ZHAO Xia, ZHA Xiangdong, MA Yingche, LIU Kui. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE WELDING JOINT OF A NEW CORROSION- RESISTING NICKEL-BASED ALLOY AND 304 AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2014, 50(11): 1335-1342.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00284      或      https://www.ams.org.cn/CN/Y2014/V50/I11/1335

[1] Yang R T, Wang Z F, Zhang H F, Cheng L M, Bi J C. Surf Technol, 2007; 36(5): 84 (杨润田, 王志锋, 张海峰, 程乐明, 毕继诚. 表面技术, 2007; 36(5): 84)
[2] Zhu F W, Zhang L F, Qiao P P, Liu R Q, Bao Y C, Chen Y Q. Nucl Power Eng, 2009; 30(5): 62 (朱发文, 张乐福, 乔培鹏, 刘瑞芹, 鲍一晨, 陈宇清. 核动力工程, 2009; 30(5): 62)
[3] Han E H. Corros Sci Prot Technol, 1999; 11: 53 (韩恩厚. 腐蚀科学与防护技术, 1999; 11: 53)
[4] Chen Y, Sridharan K, Allen T R. Corros Sci, 2006; 48: 2843
[5] Chen Y, Sridharan K, Allen T R, Ukai S. J Nucl Mater, 2006; 359: 50
[6] Gupta G, Ampornrat P, Ren X, Sridharan K, Allen T R, Was G S. J Nucl Mater, 2007; 361: 160
[7] Cho H S, Kimura A, Ukai S, Fujiwara M. J Nucl Mater, 2004; 329: 387
[8] Tan L, Ren X, Allen T R. Corros Sci, 2010; 52: 1520
[9] Zhu F W, Zhang L F, Tang R, Qiao P P, Bao Y C. At Energ Sci Technol, 2010; 44: 979 (朱发文, 张乐福, 唐 睿, 乔培鹏, 鲍一晨. 原子能科学技术, 2010; 44: 979)
[10] Sun Y. Master Thesis, Shanghai Jiao Tong University, 2013 (孙 耀. 上海交通大学硕士学位论文, 2013)
[11] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X. J Nucl Mater, 2007; 371: 176
[12] Wright L G, Dooley R B. Int Mater Rev, 2010; 55: 129
[13] Zhu F W, Zhang L F, Tang R, Qiao P P, Liu R Q. At Energ Sci Technol, 2009; 43: 39 (朱发文, 张乐福, 唐 睿, 乔培鹏, 刘瑞芹. 原子能科学技术, 2009; 43: 39)
[14] Was G S, Teysseyre S, Jiao Z. Corrosion, 2006; 62: 989
[15] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[16] Halvarsson M, Tang J E, Asteman H, Svensson J E, Johansson L G. Corros Sci, 2006; 48: 2014
[17] Tan L, Ren X, Sridharan K, Allen T R. Corros Sci, 2008; 50: 3056
[18] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[19] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F. Corros Sci, 2009; 51: 2092
[20] Zhang Q, Tang R, Li C, Luo X, Long C S, Yin K J. Nucl Eng Technol, 2009; 41: 107
[21] Li L. Master Thesis, Shanghai Jiao Tong University, 2012 (李 力. 上海交通大学硕士学位论文, 2012)
[22] Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X, Pister C. J Nucl Mater, 2007; 371: 176
[23] Bao Y C. Master Thesis, Shanghai Jiao Tong University, 2011 (鲍一晨. 上海交通大学硕士学位论文, 2011)
[24] Chen B Q, Pan C X, Zhang Z H. J Wuhan Transp Univ, 1995; 19(1): 1 (陈冰泉, 潘春旭, 张志慧. 武汉交通科技大学学报, 1995; 19(1): 1)
[25] Dupont J N, Lippold J C, Kiser S D. Welding Metallurgy and Weldability of Nickel Base Alloys. Hoboken: John Wiley & Sons, Inc, 2009: 47
[26] Zhao B H, He L, Yao Y M. Welding Processing Technology and Quality Testing, Failure Analysis and Metallograph Practical Handbook. Beijing: Metallurgical Industry Press, 2006: 1203 (赵炳辉, 何 伦, 姚一鸣. 焊接件加工处理工艺与质量检测、失效分析技术及金相图谱实用手册. 北京: 冶金工业出版社, 2006: 1203)
[1] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[2] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[3] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[4] 郭静, 李金国, 刘纪德, 黄举, 孟祥斌, 孙晓峰. 低偏析异质籽晶制备单晶高温合金的籽晶熔合区形成机制研究[J]. 金属学报, 2018, 54(3): 419-427.
[5] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[6] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[7] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[8] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[9] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[10] 赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*[J]. 金属学报, 2015, 51(2): 249-256.
[11] 赵霞, 刘扬, 查向东, 程乐明, 马颖澈, 刘奎. 一种新型镍基耐蚀合金焊接接头的组织与力学性能[J]. 金属学报, 2014, 50(11): 1377-1383.
[12] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[13] 聂文金 尚成嘉 由洋 张晓兵 Sundaresa Subramanian. 抗变形X100管线钢模拟焊接热影响区的组织与韧性研究[J]. 金属学报, 2012, 48(7): 797-806.
[14] 杨成功,单际国,任家烈. TiNi合金激光焊接接头形状恢复温度的研究[J]. 金属学报, 2012, 48(5): 513-518.
[15] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.